
A Slice Algorithm for corners and Hilbert-Poincaré series
of monomial ideals

Bjarke Hammersholt Roune

ABSTRACT
We present an algorithm for computing the corners of a
monomial ideal. The corners are a set of multidegrees that
support the numerical information of a monomial ideal such
as Betti numbers and Hilbert-Poincaré series. We show an
experiment using corners to compute Hilbert-Poincaré series
of monomial ideals with favorable results.

1. INTRODUCTION
We present an algorithm that computes the corners of

a monomial ideal along with their Koszul simplicial com-
plexes. This allows to compute Hilbert-Poincaré series, ir-
reducible decomposition [5] and Koszul homology (as de-
scribed e.g. in [7]).

In a sense the corners are (or includes) those places on a
monomial ideal where something “interesting” happens, and
the Koszul simplicial complex for a corner encodes the local
information about precisely what is happening there. In ask-
ing a computational (or otherwise) question about monomial
ideals it is then a reasonable instinct to think about whether
knowing the corners and their Koszul simplicial complexes
would aid in answering that question. Corners are then a
potentially valuable tool in constructing algorithms, and the
theoretical and practical value of the tool depends on the
theoretical and practical performance of algorithms for cor-
ners.

A recent and indeed first theoretical advance in this di-
rection is a reverse search algorithm [2] for corners. As a
reverse search algorithm it computes the corners of a mono-
mial ideal in no more space up to a constant factor than that
required by the input and output and in polynomial time.

Our contribution in this paper is an algorithm for corners
that shows good practical performance. We demonstrate
this by comparing it to the best algorithm for computing
Hilbert-Poincaré series. We have not yet determined the
theoretical time complexity of our algorithm, though this is
an issue that deserves attention.

We call our algorithm a slice algorithm because it is in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

spired by and similar to the Slice Algorithm for maximal
standard monomials of a monomial ideal [10]. Parts of the
algorithm require modification to allow computation of cor-
ners, especially the proofs, though in particular the proof of
termination is unchanged because it concerns the properties
of monomial ideals and slices and not what is actually being
computed. The main new idea that allows the Slice Algo-
rithm to be applied to corners is that corners of full support
have special properties that allow them to satisfy the equa-
tions that the Slice Algorithm is based on while corners in
general do not.

We wish to thank Eduardo Saenz-de-Cabezon and Anna
Maria Bigatti for helpful discussions on these topics.

2. BACKGROUND AND NOTATION
Let I be a monomial ideal in some polynomial ring with

indeterminates x1, . . . , xn. Let x
def
= x1 · · ·xn. We write a

monomial xv11 · · ·xvnn as xv where v is the exponent vector.

The colon of two monomials is xu : xv
def
= xmax(u−v,0) and

we will have frequent use of the function π (m)
def
= m : x.

We can only very briefly cover the needed concepts. We
recommend [8] for a more in-depth introduction.

2.1 Monomial ideals
A monomial ideal is an ideal generated by monomials.

Then a monomial ideal I has a unique minimal set of (monic)
monomial generators min (I). The least common multiple

of two monomials lcm(xv, xv)
def
= xmax(u,v) and the greatest

common denominator is gcd(xu, xv) = xmin(u,v). The colon

of a monomial ideal by a monomial is I : m
def
= 〈a |am ∈ I 〉 =

〈a : m |a ∈ min (I) 〉.
We plot a monomial ideal in a diagram by the exponent

vectors of the monomials in the ideal, such as seen in Figure
1. The surface displayed in such a diagram is known as the
staircase surface, and the monomials on it are those m ∈ I
such that π (m) /∈ I.

Define the lcm lattice of a monomial ideal I by lat (I)
def
=

{lcm(M) |M ⊆ min (I)} with lcm as the join and gcd as the
meet of the lattice. So e.g. lat

(〈
x2, xy

〉)
=
{

1, x2, xy, x2y
}

.
The Nn-graded Hilbert-Poincaré series of I is the possibly

infinite sum of all monomials that are not in I. This sum
can be written as a fraction with (1 − x1) · · · (1 − xn) in
the denominator and a polynomial H(I) in the numerator.
When we talk of computing the Hilbert-Poincaré series of I
in this paper we are talking about computing H(I). There
is also the more conventional total degree-graded Hilbert-
Poincaré series, which is obtained by substituting xi 7→ t for

each variable in the Nn-graded Hilbert-Poincaré series.
A monomial ideal I is (weakly) generic [9] if whenever

xu, xv ∈ min (I) and ui = vi > 0 for some i, then either
u = v or there is some third generator in min (I) that strictly
divides lcm(xu, xv).

2.2 Simplicial complexes
An (abstract) simplicial complex ∆ is a set of finite sets

that is closed with respect to subset, i.e. if v ∈ ∆ and u ⊆ v
then u ∈ ∆. The elements of ∆ are faces, and the inclusion-
maximal faces are called facets. The set of facets is then

fac (∆)
def
= {v ∈ ∆ |∀u ∈ ∆ : v ⊆ u⇒ v = u}

The faces in this paper are all subsets of {x1, . . . , xn}. The

product of a face v is then Πv
def
= Πxi∈vxi and the intersec-

tion of a set of faces V is ∩V def
= ∩v∈V v.

The (upper) Koszul simplicial complex of a monomial ideal
I at a monomial m is defined by

∆I
m

def
=
{
v ⊆ {x1, . . . , xn}

∣∣∣ m
Πv
∈ I

}
,

where m
Πv

/∈ I when Πv does not divide m. So for I
def
=〈

x2, xy
〉

we see that ∆I
x2y = {∅, {x} , {y}} and ∆I

x2 = {∅}.
We remark that ∆I

m encodes the shape of the stairface
surface of I around m. This yields interesting information
about I at m, e.g. ∆I

m determines the Betti numbers at m.
A monomial m is a corner of a monomial ideal I when no

variable lies in every facet of ∆I
m. The set of corners is then

cor (I)
def
=
{

monomials m
∣∣∣∩ fac

(
∆I
m

)
= ∅

}
.

We do not consider m to be a corner if ∆I
m = ∅, while m is a

corner if ∆I
m = {∅}. So e.g. cor

(〈
x2, xy

〉)
=
{
x2, xy, x2y

}
.

The corners can be identified from a diagram of a mono-
mial ideal as those points where the staircase surface is bent
in every axis direction. The reader may verify that the cor-
ners lie on both the lcm lattice and the staircase surface.

As pointed out in [2], all multidegrees that have homol-
ogy are corners. So knowing the set of corners and their
Koszul simplicial complexes allows to determine interesting
information such as Betti numbers.

3. THE SLICE ALGORITHM IN BRIEF
The Slice Algorithm we present here is a divide and con-

quer algorithm that computes the corners of a monomial
ideal along with their Koszul simplicial complexes.

As a divide and conquer algorithm, the Slice Algorithm
breaks the problem it is solving into two problems that are
more easily solved. This process continues recursively until
the problems are base cases, i.e. they are easy enough that
they can be solved directly. The minimal ingredients of the
Slice algorithm are then a recursive step, a base case, a proof
of termination and a proof of correctness.

4. THE RECURSIVE STEP
The Slice Algorithm operates on what we call slices. A

slice A represents a subset of the corners of the input ideal,
and we refer to this subset as the content con (A) of the
slice. The Slice Algorithm recursively splits a slice A into
two less complicated slices B and C such that con (A) is the
disjoint union of con (B) and con (C).

We first present the formal definition of a slice and the
equation we use to split slices. We follow that by an exam-
ple that suggests a visual intuition of what the equation is
stating. After that we prove that the equation is correct.

Definition 1. A slice is a 3-tuple (I, S, q) where I and S
are monomial ideals and q is a monomial. The content of
(I, S, q) is defined by

con (I, S, q)
def
=
{(

mq,∆I
mx

)∣∣∣mx ∈ cor (I) and m /∈ S
}
.

The Slice Algorithm computes content, and this suffices to
compute corners since cor (I) = con (Ix, 〈0〉, 1). Note how
the multiplication by x in Ix and in the definition of content
cancel each other out. This might seem to be a superfluous
complication that we could resolve by simply removing x in
both places. However, the significance of x in the definition
of content is that we consider only corners of full support.
Corners of full support have special properties that the Slice
Algorithm depends on. This can be seen by the fact that
many of our lemmas impose a condition of full support and
that those lemmas cease to hold if the condition is lifted.

If C is a set of pairs (m,∆) and S is a monomial ideal,
then it will be of considerable convenience for us to perform
set operations between C and S while not paying attention
to the simplicial complexes in C. I.e.

C ∩ S def
= {(m,∆) ∈ C |m ∈ S } ,

C \ S def
= {(m,∆) ∈ C |m /∈ S } .

The Slice Algorithm uses the following equation to split
a slice into two less complicated slices. We illustrate this in
Example 1 and we discuss it further after the example.

con (I, S, q) = con (I : p, S : p, qp) ∪ con (I, S + 〈p〉, q) .

y6

x2y4

x5y2

x6

p

y3

xy

x4

y6

x5y2

x6

p

(a) (b) (c)

Figure 1: Illustrations for example 1.

Example 1. Let I :=
〈
x6, x5y2, x2y4, y6

〉
and p := xy3.

Then I is the ideal depicted in Figure 1(a) where 〈p〉 is
indicated by the dotted line. The corners are indicated by
squares, and the squares for the corners of full support are
filled. The full support corners are{

x2y6, x2y4, x5y4, x5y2, x6y2} .
We compute this set of full support corners by performing a
step of the Slice Algorithm. We will not mention the Koszul
upper complexes, but the reader may verify that these work
out correctly as well.

Let I1 be the ideal I : p =
〈
y3, xy, x4

〉
, as depicted in

Figure 1(b). As can be seen by comparing figures 1(a) and
1(b), the ideal I1 corresponds to the part of the ideal I that
lies within 〈p〉. Thus it is reasonable to expect that the full
support corners of I1 corresponds (after multiplication by

p) to the full support corners of I that lie within 〈p〉. This
turns out to be true, since{

xy3, xy, x4y
}
∗ p =

{
x2y6, x2y4, x5y4} .

It now only remains to find the full support corners of I
that lie outside of 〈p〉. Let I2 :=

〈
x6, x5y2, y6

〉
as depicted

in Figure 1(c). The dotted line indicates that we are igno-
ring everything inside 〈p〉. It happens to be that one of the
minimal generators of I, namely x2y4, lies in the interior of
〈p〉, which allows us to ignore that minimal generator. We
see that the corners of full support of I2 that lie outside of
〈p〉 are

{
x5y2, x6y2

}
.

We have now found all the full support corners of I from
the full support corners of I1 and those full support corners
of I2 that lie outside of 〈p〉. Using the language of slices,
we have split the slice A := (I, 〈0〉 , 1) into the two slices
A1 := (I1, 〈0〉 , p) and A2 := (I2, 〈p〉 , 1), and indeed

con (A) =
{
x2y6, x2y4, x5y4, x5y2, x6y2}

=
({
xy3, xy, x4y

}
∗ xy3) ∪ {x5y2, x6y2}

= con (A1) ∪ con (A2) ,

where the union is disjoint.

What we did in Example 1 was to rewrite con (I, S, q) as

con (I, S, q) = (con (I, S, q) ∩ 〈qp〉) ∪ (con (I, S, q) \ 〈qp〉) ,

and we wrote the two disjoint sets on the right hand side of
this equation as the content of two slices. We now seek a
way to do this given a general slice (I, S, q) and a polynomial
p. This is easy to do for the second set on the right hand
side, since the definition of content implies that

con (I, S + 〈p〉, q) = con (I, S, q) \ 〈qp〉 .

For the first set on the right hand side, we refer to Theo-
rem 1, which states that

con (I : p, S : p, qp) = con (I, S, q) ∩ 〈qp〉 .

Example 1 gives an intution of why this should be true.
Putting together the pieces, we get the pivot split equation

con (I, S, q) = con (I : p, S : p, qp) ∪ con (I, S + 〈p〉, q) .
(1)

This equation is the basic engine of the Slice Algorithm. We
will discuss it and its parts at length, so we introduce names
to make such discussion convenient. The process of applying
the pivot split equation is called a pivot split and p is the
pivot. The left hand side slice (I, S, q) is the current slice,
since it is the slice we are currently splitting. The first right
hand slice (I : p, S : p, qp) is the inner slice, since its content
is inside 〈qp〉. The second right hand slice (I, S + 〈p〉 , q) is
the outer slice, since its content is outside 〈qp〉.

We have stated that the Slice Algorithm splits a slice into
two less complicated slices. So both the inner slice and the
outer slice should be less complicated than the current slice.
This is so for the inner slice because I : p generally is a less
complicated monomial ideal than I is. It is not immediately
clear that the outer slice (I, S + 〈p〉 , q) is less complicated
than the current slice. To see how it can be less complicated,
consider Equation (2) which we prove in Theorem 1.

cor (I) \ S = cor
(
I ′
)
\ S, I ′

def
= 〈m ∈ min (I) |π (m) /∈ S 〉 .

(2)

This equation states that we can remove from min (I) those
elements that are strictly divisible by some element of S
without changing the content of the slice. The outer slice
has S + 〈p〉 where the current slice has S, so there is the
potential to remove elements of min (I) due to Equation (2).

We apply Equation (2) whenever it is of benefit to do so,
which it is when π (min (I))∩S 6= ∅. Otherwise we say that
the slice is normal, i.e. when π (min (I)) ∩ S = ∅.

Theorem 1. If p is a monomial, then

i) con (I : p, S : p, qp) = con (I, S, q) ∩ 〈qp〉 ,

ii) con (I, S, q) = con (I ′, S, q) ,

where I ′
def
= 〈m ∈ min (I) |π (m) /∈ S 〉 .

Proof. i): We get from the definition of content that

con (I : p, S : p, qp)

=
{(
mpq,∆I:p

mx

)
|mx ∈ cor (I : p) and m /∈ S : p

}
=

(m′q,∆I:p
m′

x:p

) ∣∣∣∣∣∣
p divides m′ and
m′ : p /∈ S : p and
m′x : p ∈ cor (I : p)


con (I, S, q) ∩ 〈qp〉

=
{(
mq,∆I

mx

)
|p divides m /∈ S and mx ∈ cor (I)

}
We prove that the two sets are equal by showing that each

pair of similar conditions above are in fact equivalent. Even
though m and m′ are the same monomial, we retain the dis-
tinction to make it clear which set we are referring to. Going
from left to right, we get by Lemma 1 that ∆I

mx = ∆I:p
m′

x:p.
This leaves only the rightmost condition about corners.

Whether mx is an element of cor (I) depends only on
∆I
mx. Likewise, whether m′x : p is an element of cor (I : p)

depends only on ∆I:p
m′

x:p. We have just seen that these two

simplicial complexes are equal, so mx is an element of cor (I)
if and only if m′x : p is an element of cor (I : p). This leaves
only the matter of m /∈ S being equivalent to m′ : p /∈ S : p.

If t is a monomial such that p|t then t ∈ S ⇔ t : p ∈ S : p,
so m /∈ S if and only if m′ : p /∈ S : p and we are done.
ii): Lemma 3 implies the more general statement that if

π (I) \ S = π (I ′) \ S then con (I, S, q) = con (I ′, S, q). The
former equation is satisfied by the particular I and I ′ in the
theorem since it holds for monomials a that

a ∈ π
(
I ′
)
\ S ⇔ ∃m ∈ min

(
I ′
)

: π (m) |a and a /∈ S
⇔ ∃m ∈ min (I) : π (m) /∈ S and π (m) |a and a /∈ S
⇔ ∃m ∈ min (I) : π (m) |a and a /∈ S ⇔ a ∈ π (I) \ S.

Lemma 1. If p|m then ∆I
mx = ∆I:p

mx:p.

Proof. We use Lemma 2 with A
def
= I, B

def
= (I : p)p and

c
def
= mx. The preconditions of Lemma 2 are satisfied since
〈π (mx)〉 = 〈m〉 ⊆ 〈p〉 and A ∩ 〈p〉 = B ∩ 〈p〉, so

∆I
mx = ∆(I:p)p

mx = ∆
(I:p)p

(mx:p)p = ∆I:p
mx:p.

Lemma 2. If A and B are monomial ideals and c is a
monomial such that A∩〈π (c)〉 = B∩〈π (c)〉 , then ∆A

c = ∆B
c .

Proof. Let v ∈ ∆A
c . Then π (c) | c

Πv
∈ A so c

Πv
∈ A ∩

〈π (c)〉 = B ∩ 〈π (c)〉 so c
Πv
∈ B so v ∈ ∆B

c . Swap A and B
in this proof to get the other inclusion.

Lemma 3. If A, B and C are monomial ideals such that
π (A) \ C = π (B) \ C and m /∈ C is a monomial, then
∆A
mx = ∆B

mx.

Proof. Let v ∈ ∆A
mx. Then mx

Πv
∈ A so m

Πv
∈ π (A). As

m
Πv
|m /∈ C this implies that m

Πv
∈ π (A)\C = π (B)\C. Then

m
Πv
∈ π (B) so mx

Πv
∈ π (B)x = B ∩ 〈x〉 ⊆ B so v ∈ ∆B

mx.
Swap A and B in this proof to get the other inclusion.

5. THE BASE CASE
In this section we present the base case of the Slice Al-

gorithm. A slice (I, S, q) is a base case slice if I is square
free or if I does not have full support (i.e. x does not di-
vide lcm(min (I))). Theorem 2 and Theorem 3 show how to
obtain the content of a base case slice.

Theorem 2. If I is a monomial ideal that does not have
full support, then con (I, S, q) = ∅.

Proof. No element of the lcm lattice of I has full support
when I does not have full support. The corners of I lie on
the lcm lattice of I, and the only corners of I we consider
for the content are those of full support.

Recall that φ maps sets v ⊆ {x1, . . . , xn} to the product
of variables not in v, i.e. φ(v) = Πv̄ = Πxi /∈vxi. The main
fact to keep in mind about φ is that it maps a subset relation
into a domination relation, i.e. v ⊇ u⇔ φ(v)|φ(u).

Theorem 3. If (I, S, q) is a slice such that I is square free
and has full support, then con (I, S, q) =

{
(q,∆I

x
)
}

where

fac
(
∆I
x

)
= φ−1(min (I)).

Proof. Lemma 4 implies that

φ
(

fac
(

∆I
x

))
= min (Ix : x) \

〈
x2

1, . . . , x
2
n

〉
= min (I) .

This implies that

φ
(
∩ fac

(
∆I
x

))
= lcm

(
φ(fac

(
∆I
x

))
= lcm(min (I)) = x.

Then ∩ fac
(
∆I
x

)
= φ−1(x) = ∅ so x is a corner of I. The

corners of I lie on the lcm lattice, so they are all square free.
We only consider corners of full support for the content, so
x is the only corner that appears in the content.

Lemma 4. If m is a monomial, then

φ
(

fac
(

∆I
m

))
= min (Ix : m) \

〈
x2

1, . . . , x
2
n

〉
.

Proof. We see that φ(fac
(
∆I
m

)
) = min(φ(∆I

m)). Then
the result follows by applying min to both sides of

φ(∆I
m) = {a ∈ Ix : m | a is a square free monomial} .

Every square free monomial can be written as φ(v) for some
v ⊆ {x1, . . . , xn}, so this equation follows from

φ(v) ∈ φ(∆I
m)⇔ v ∈ ∆I

m ⇔
m

Πv
∈ I

⇔ mx

Πv
∈ Ix⇔ mφ(v) ∈ Ix

⇔ φ(v) ∈ Ix : m.

6. TERMINATION
We present four conditions on the choice of the pivot in

pivot splits that are necessary and jointly sufficient to ensure
termination. Each condition is independent of the others.

The conditions are listed below, along with an explanation
of why violating any one of the conditions results in an inner
or outer slice that is equal to the current slice. Once that
happens the split can be repeated forever so that the Slice
Algorithm would not terminate, so this shows that each con-
dition is necessary. Note that just the first two conditions
are sufficient to ensure termination at this point, but the
last two conditions will become necessary after some of the
improvements in Section 9 are applied.

Condition 1: p /∈ S
Otherwise p ∈ S and then the outer slice will be equal
to the current slice.

Condition 2: p 6= 1
Otherwise p = 1 and then the inner slice will be equal
to the current slice.

Condition 3: p /∈ I
Otherwise the outer slice will be equal to the current
slice after “Pruning of S” from Section 9.

Condition 4: p|π (lcm(min (I)))
Otherwise the outer slice will be equal to the current
slice after “More pruning of S” from Section 9.

We say that a pivot is valid when it satisfies these four
conditions. Having imposed these conditions, we need to
show that every slice that is not a base case admits a valid
pivot (Theorem 4), and that it is not possible to keep split-
ting on valid pivots forever (Theorem 5).

Theorem 4. If (I, S, q) is normal and admits no valid
pivot, then I is square free and so (I, S, q) is a base case.

Proof. Suppose I is not square free. Then there exists
an xi such that x2

i |m for some m ∈ min (I), which implies
that xi /∈ I. Also, xi /∈ S since xi|π (m) and (I, S, q) is
normal. We conclude that xi is a valid pivot.

Theorem 5. Selecting valid pivots ensures termination.

Proof. The polynomial ring we are working within is
noetherian, i.e. it does not contain an infinite sequence of
ideals that is strictly increasing. We show that if the Slice
Algorithm does not terminate, then such a sequence exists.

Let f and g be functions mapping slices to ideals, and de-

fine them by f(I, S, q)
def
= S and g(I, S, q)

def
= 〈lcm(min (I))〉.

Suppose we split a non-base case slice A where A1 is the
inner slice and A2 is the outer slice. Then Condition 1,
Condition 2 and the fact that I has full support imply that

f(A) ⊆ f(A1), g(A) (g(A1),

f(A) (f(A2), g(A) ⊆ g(A2).

Also, if we let A be an arbitrary slice and we let A′ be the
corresponding normal slice, then

f(A) ⊆ f(A′), g(A) ⊆ g(A′).

So we see that f and g never decrease, and one of them
strictly increases on the outer slice while the other strictly
increases on the inner slice. Thus there does not exist an
infinite sequence of splits on valid pivots.

7. PSEUDO CODE
We show the Slice Algorithm in pseudo code.

function con (I, S, q)

let I ′
def
= 〈m ∈ min (I) |π (m) /∈ S 〉

if x does not divide lcm(min (I ′)) then return ∅
if I ′ is square free then return

{(
q, φ−1(min (I))

)}
let p be some monomial such that 1 6= p /∈ S
return con (I ′ : p, S : p, qp) ∪ con (I ′, S + 〈p〉, q)

We have represented the simplicial complexes by their facets,
so con (Ix, 〈0〉, 1) returns

{(
m, fac

(
∆I
m

))
|m ∈ cor (I)

}
.

For the choice of p an easy though inefficient choice is to
follow the proof of Theorem 4 and select an xi such that x2

i

divides some minimal generator of I ′.

8. EXAMPLE
The tree shows the steps of the algorithm on

〈
xy, x2

〉
.

(〈x2y2, x3y〉, 〈0〉, 1)

(〈x, y〉, 〈0〉, x2y)(〈x2y2, x3y〉, 〈x2y〉, 1)

(〈x3y〉, 〈xy〉, 1)

(〈xy〉, 〈y〉, x2)(〈0〉, 〈x2, xy〉, 1)

A

B

CD

p = x2y

p = xy

p = x2

(〈xy〉, 〈x〉, xy)

Outer Inner

The contents of the leaves are (we specify facets only)

con (A) =
{(
x2y, {{y} , {x}}

)}
, con (B) = {(xy, {∅})} ,

con (C) =
{(
x2, {∅}

)}
, con (D) = ∅.

9. IMPROVEMENTS
In this section we show a number of improvements to the

basic version of the Slice Algorithm presented so far.
It is natural that more specific versions of the improve-

ments presented here also apply to the Slice Algorithm for
maximal standard monomials and irreducible decomposition
[10]. We use this fact in reverse by transferring the improve-
ments to that algorithm to our current setting of corners and
Koszul simplicial complexes. The improvements that rely
only on the properties of monomial ideals and slices apply
without change, while those that rely in their essence on the
particular definition of content have to be adapted.

We summarize and classify each improvement according
to whether it needs to be adapted. We refer to [10] for more
detail on those improvements that apply without change.

Monomial lower bounds on slice contents: It is possi-
ble to replace a slice by a simpler slice with the same
content using a monomial lower bound on the content.
This improvement relies on the definition of content
and so has to be adapted to apply to our setting.

Independence splits: This improvement applies to mono-
mial ideals that have independent sets of variables. We
briefly describe how to adapt this to our setting.

A base case for two variables: There is a base case for
ideals in two variables. This improvement has to be
adapted to our setting.

Pruning of S: If (I, S, q) is a slice, this improvement is to
remove elements of min (S) that lie in I. This can
speed things up in case |min (S)| becomes large. The
improvement and its proof apply without change.

More pruning of S: If (I, S, q) is a slice, this improve-
ment is to remove elements of min (S) that do not
strictly divide lcm(min (I)). A significant implication
of this is that pivots that are pure powers can always
be removed from S after normalization. The improve-
ment and its proof apply without change.

Minimizing the inner slice: This is a general monomial
ideal technique for fast calculation of colons and in-
tersections of a general monomial ideal by a principal
monomial ideal. This applies to computing inner slices.
The technique applies without change.

Reduce the size of exponents: This is a general mono-
mial ideal technique for supporting arbitrary precision
exponents in a way that is as fast as using native ma-
chine integers. The technique applies without change.

9.1 Monomial lower bounds on slice contents
Let l be a monomial lower bound on the slice (I, S, q) in

the sense that ql|c for all c ∈ con (I, S, q). In a pivot split
on l, we can then predict that the outer slice will be empty.
So the Pivot Split Equation (1) specializes to

con (I, S, q) = con (I : l, S : l, ql) , (3)

which shows that we can get the effect of performing a split
while only having to compute a single slice. This is only in-
teresting if we can determine a lower bound of a slice without
already knowing its content, which is what Theorem 6 does.

Theorem 6. If (I, S, q) is a slice, then

lxi
def
= π (gcd(min (I) ∩ 〈xi〉))

is a monomial lower bound on (I, S, q) for each variable xi.

Proof. Suppose c ∈ cor (I) such that xi|c. As c lies on
the lcm lattice there is then an m ∈ min (I) such that xi|m|c
and then gcd(min (I) ∩ 〈xi〉)|m|c.

If qc ∈ con (I, S, q) then cx ∈ cor (I), and we have just
proven that this implies that lxi = π (· · ·) |π (cx) = c.

Theorem 6 allows us to make a slice simpler with no
change to the content, and this can be iterated until a fixed
point is reached simultaneously for every variable.

9.2 Independence splits
Following [10] we define I-independence and show how

this allows to perform a more efficient kind of split. This
technique for the Slice Algorithm was inspired by a simi-
lar technique for computing Hilbert-Poincaré series that was
first suggested in [1] and described in more detail in [4].

Definition 2. Let A,B be non-empty disjoint sets such
that A∪B = {x1, . . . , xn}. Then A and B are I-independent
if min (I) ∩ 〈A〉 ∩ 〈B〉 = ∅.

In other words, A and B are I-independent if no element
of min (I) is divisible by both a variable in A and a variable
in B. For this section, let R be the ambient polynomial ring
of I, and let RA be the subring with the variables from A
and let RB be the subring with the variables from B. These
subrings then have their own versions φA and φB of φ, i.e.

φ(v)
def
=

x

Πv
, φA(v)

def
=

ΠA

Πv
, φB(v)

def
=

ΠB

Πv
,

and we project I to IA
def
= I ∩RA and IB

def
= I ∩RB .

Example 2. Let I
def
=
〈
x2, xy, y2, z2

〉
, A

def
= {x, y} and B

def
=

{z}. Then A and B are I-independent. We have that

fac
(

∆I
xyz

)
= {{z}} 7→φ {xy} ,

fac
(

∆IA
xy

)
= {∅} 7→φA {xy} ,

fac
(

∆IB
z

)
= {} 7→φB {} ,

and so we get ∆I
xyz in terms of its projections as

φ
(

fac
(

∆I
xyz

))
=

φA
(

fac
(

∆IA
xy

))
∪ φB

(
fac
(

∆IB
z

))
.

We get the corresponding equation at xyz2 since

fac
(

∆I
xyz2

)
= {{x, y} , {z}} 7→φ {z, xy} ,

fac
(

∆IB
z2

)
= {∅} 7→φB {z} .

Theorem 7 generalizes the observation in Example 2. The
process of applying Theorem 7 is called an independence
split. The statement may seem more familiar if one considers
that φ(∆) is the Alexander dual of the Stanley-Reisner ideal
of ∆, though we offer a direct proof for completeness.1

Theorem 7. If A,B are I-independent and a ∈ RA and
b ∈ RB are monomials such that ab has full support, then

φ
(

fac
(

∆I
ab

))
=

φA
(

fac
(

∆IA
a

))
∪ φB

(
fac
(

∆IB
b

))
.

In particular,

cor (I) ∩ 〈x〉 = (cor (IA) ∩ 〈x〉) · (cor (IB) ∩ 〈x〉) .

Proof. Let a′
def
= π (a) and b′

def
= π (b). Then ab = a′b′x

and we apply Theorem 3 within R, RA and RB to get that

φ
(

fac
(

∆I
ab

))
= min

(
I : a′b′

)
\
〈
x2

1, . . . , x
2
n

〉
,

φA
(

fac
(

∆IA
a

))
= min

(
IA : a′

)
\
〈
x2
i

∣∣xi ∈ A〉 ,
φB
(

fac
(

∆IB
b

))
= min

(
IB : b′

)
\
〈
x2
i

∣∣xi ∈ B〉 .
The first equation then follows from

I : a′b′ = IA : a′ + IB : b′.

1Note to reviewer: I presume that Theorem 7 is known. I
am looking into finding a reference for it.

To see how the second equation follows from the first,
recall that c is a corner if and only if lcm(φ(fac

(
∆I
c

)
)) = x.

Then we are done as

lcm
(
min

(
I : a′b′

)
\
{
x2

1, . . . , x
2
n

})
=

lcm
(
min

(
IA : a′

)
\
〈
x2
i

∣∣xi ∈ A〉) ∗
lcm

(
min

(
IB : b′

)
\
〈
x2
i

∣∣xi ∈ B〉) .
Since content only concerns corners of full support, this

allows to compute the content of a slice (I, S, q) from its pro-
jections onto RA and RB provided A,B are I-independent
and S-independent. See [10] for suggestions on what to do
if A,B are I-independent but not S-independent.

It is true that independence can never obtain for the initial
slice (Ix, 〈0〉 , 1) due to the multiplication by x, but it can
obtain for slices considered at a later stage of the algorithm.

9.3 A base case of two variables
If n = 2 then the corners and their simplicial Koszul com-

plexes can be computed directly at only the cost of sorting
the minimal generators. This can be relevant even if the
input ideal is in more than two variables since independence
splits generate slices in fewer variables than the input.

Let min (I) = {m1, . . . ,mk} where m1, . . . ,mk are sorted
in ascending lexicographic order with x1 > x2. There are
only two kinds of corners for n = 2. The first are the gen-
erators a1, . . . , ak, and the Koszul simplicial complex for all
of these is {∅}.

The second kind of corner are the maximal staircase mono-
mials. Let ψ(xu, xv)

def
= xv11 xu2

2 . Then the maximal staircase
monomials are ψ(a1, a2), . . . , ψ(ak−1, ak). These all have
complex {∅, {x1} , {x2}}.

Example 3. For I
def
=
〈
xy5, x2y, x5

〉
we have

con (Ix, 〈0〉, 1) = {(xy5, {∅}), (x2y, {∅}), (x5, {∅}),
(x2y5, {∅, {x1} , {x2}}),
(x5y, {∅, {x1} , {x2}})}.

10. HILBERT POINCARÉ SERIES
In this section we show how to use corners to compute

Hilbert-Poincaré series. This is possible because of the well-
known and indeed ancient Euler characteristic.

Definition 3. The Euler characteristic of ∆ is defined by

χ (∆)
def
=
∑
v∈∆

(−1)|v|−1.

It is also well known that the Euler characteristic deter-
mines the coefficients of the Hilbert-Poincaré series numer-
ator by way of the upper Koszul simplicial complex. Since
non-corners have a zero Euler characteristic, we get that

H(I) =
∑
v∈Nn

χ
(

∆I
xv

)
xv =

∑
m∈cor(I)

χ
(

∆I
m

)
m. (4)

So the knowledge of the corners and their associated Koszul
simplicial complexes yields the Hilbert-Poincaré series nu-
merator, and the former is of course precisely what the Slice

Algorithm computes. It only remains to show how to com-
pute the Euler characteristic. 2

To compute the Euler characteristic, we are going to use
a characterization in terms of the square free ideal 〈φ(∆)〉.
Since ∆

〈φ(∆)〉
x = ∆, we get from Equation 4 that

Coefficient of x in H(〈φ(∆)〉) = χ
(

∆〈φ(∆)〉
x

)
= χ (∆) .

Thus computing the Euler characteristic of a simplicial com-
plex amounts to computing the coefficient of x in H(I) for
I a square free monomial ideal. In this way it makes sense
to define χ (I) as the coefficient of x in H(I).

We could compute all of H(I) to get χ (I), but we don’t
have to. The divide and conquer algorithm by Bigatti et.al.
[4, 3] is the best way to compute Hilbert-Poincaré series. It
is based on repeated application of the equation

H(I) = H(I : p)p+H(I + 〈p〉), (5)

where p is a monomial. For square free p this implies that

χ (I) = χ (I : p) + χ (I + 〈p〉) ,

where we embed I : p in the subring of the ambient polyno-
mial ring that excludes those variables that divide p.

If A,B are I-independent sets of variables then it is well
known that H(I) = H(IA)H(IB), recalling these definitions
from Section 9.2. Then we also have χ (I) = χ (IA)χ (IB).

In particular, if m ∈ min (I) and m is relatively prime to
every other minimal generator of I, then

χ (I) = χ
(
I ′
)
χ (〈m〉) = −χ

(
I ′
)
, I ′

def
= 〈min (I) \ {m}〉 .

We can also tell that χ (I) = 0 if lcm(min (I)) 6= x, recall-
ing that I is square free.

This suggests a procedure to compute χ (I). The proce-
dure terminates as long as we choose the monomials p such
that 1 6= p /∈ I, and thus we have an algorithm for comput-
ing Euler characteristics. This and the Slice Algorithm for
corners then yields an algorithm for Hilbert-Poincaré series.

Running this Euler characteristic algorithm for every cor-
ner might seem like it would take a lot of time, but in fact in
our implementation it generally takes longer to compute the
corners and Koszul simplicial complexes in the first place.

We should point out that this Corner-Euler algorithm for
computing Hilbert-Poincaré series is not equivalent to the
Bigatti et.al. algorithm, even though the Euler characteris-
tic computation is also based on Equation 5. One way to see
this is to consider that there can be corners of I + 〈p〉 and
corners of I : p that are not corners of I. The Bigatti et.al.
algorithm can tolerate this because any terms of H(I : p)p
and H(I + 〈p〉) that correspond to these additional corners
will cancel out such that they do not appear in the final
output. In contrast the Slice Algorithm looks only for the
actual corners.

Since no terms cancel in the output of the Corner-Euler
Algorithm, it is possible to output a term and vacate it

2Note to reviewer: While the algorithm is expressed in terms
of monomial ideals here (which is convenient for the proofs),
it can be translated to simplicial complexes by applying φ−1

to all the equations. As such, I would have thought that this
algorithm would be known. However, after a fair amount of
looking, I haven’t been able to find any papers on algorithms
for the Euler characteristic of a general abstract simplicial
complex. I will ask around some more, and I would be grate-
ful for any references.

from memory as soon as it is computed. In contrast the
Bigatti et.al. algorithm has to wait for the extra terms to
cancel, and so the terms that occur in the Hilbert-Poincaré
series numerator are not identifiable until the end of the
computation.

11. EXPERIMENTS
In this section we gauge the practical performance of our

algorithm for corners. Unfortunately, we know of no imple-
mentations of algorithms for corners that we might compare
ours against. The computation of Hilbert-Poincaré series
has, however, received a lot of attention both in the litera-
ture and in terms of being implemented, and so we look at
the Corner-Euler Algorithm for Hilbert-Poincaré series for
this experiment.

We have implemented both the Corner-Euler algorithm
and the Bigatti et.al. algorithm in the software system
Frobby, which is a system for monomial ideal computations.
These implementations are of comparable quality and writ-
ten by the same person to make the comparison as fair as
possible. The implementation of the Bigatti et.al. algorithm
in CoCoA [6] is to our knowledge the best implementation
out there, so we include that in the comparison as well.

We employ a suite of 4 ideals for the experiment, and we
name them respectively generic, nongeneric, squarefree and
toric. These ideals have been selected from a long list of
possible ideals that we could have used. They have been
selected solely on the basis of providing interesting informa-
tion and for being neither trivial nor so demanding that the
experiment will run for a long time. Table 1 has further
information.

generic: This ideal has been randomly generated with ex-
ponents in the range [0,30000]. The ideal is thus very
close to generic.

nongeneric: This ideal has been randomly generated with
exponents in the range [0,10]. The ideal is thus far
from generic but also far from being square free.

squarefree: This ideal has been randomly generated with
exponents in the range [0,1]. It is thus square free and
farthest from generic.

toric: This ideal is the initial ideal of a toric ideal defined by
a primitive vector with eight entries that are random
numbers of 30 decimal digits each. The ideal is generic
and has exponents in the range [0,95998]. Computing
the Hilbert-Poincaré series of this ideal is a subalgo-
rithm in computing the genus of the numerical semi-
group generated by the primitive vector.

We run two experiments, one for computing the Nn-graded
Hilbert-Poincaré series, and the other for the conventional
total degree-graded Hilbert-Poincaré series. These are shown
in Table 2 and 3 respectively.3

One conclusion we can draw is that the Corner-Euler al-
gorithm is faster for the multigraded computation than for

3Note to reviewer: We have been unable to obtain times for
CoCoA for the Nn-graded Hilbert-Poincaré series seemingly
due to a bug in CoCoA. We are in contact with the authors
of CoCoA to remedy this. Also, there is an anomaly in the
data on the input nongeneric, where CoCoA is drastically
faster than Frobby even using the same algorithm. We are
investigating the reason for this.

name n |min(I)| terms of H(I) corners

generic 10 160 2,940,226
nongeneric 10 200 796,931
squarefree 20 4,000 251,650
toric 8 2,099 2,948,154

(the number of corners will be in the final version)

Table 1: Further information about the ideals.

software Frobby Frobby CoCoA4
algorithm Corner-E. Bigatti ea. Bigatti ea.

generic 59s 1,467s
nongeneric 35s 73s
squarefree 156s 60s
toric 65s 262s

Table 2: Multigraded Hilbert-Poincaré series.

the univariate one. This is because the Corner-Euler algo-
rithm can output terms as soon as they are computed in the
former case, but in the latter case it is necessary to collect
like terms before output and this takes extra time.

The Bigatti et.al. algorithm has the opposite behavior,
being faster for the univariate computation than the multi-
variate one. This is because univariate computations allow
a base case that is very fast when the degrees of the genera-
tors are not too high. Otherwise the base case is exponential
in the number of variables, and avoiding this is part of the
benefit that the Bigatti et.al. algorithm derives from the
univariate computation.

We conjecture that the reason that the Corner-Euler algo-
rithm is faster than the Bigatti et.al. algorithm for generic
ideals is that in those cases the number of terms that the
Bigatti et.al. algorithm generates that are not actually part
of the output is much higher than for other ideals.4

12. REFERENCES
[1] Dave Bayer and Mike Stillman. Computation of

hilbert functions. Journal of Symbolic Computation,
14(1):31–50, 1992.

[2] Dave Bayer and Amelia Taylor. Reverse search for
monomial ideals. Journal of Symbolic Computation,
44:1477–1486, 2009.

[3] Anna M. Bigatti. Computation of Hilbert-Poincaré
series. Journal of Pure and Applied Algebra,

4Note to reviewer: We are looking into counting the number
of superfluous terms generated by the Bigatti et.al. algo-
rithm to test this hypothesis. Also, there is an unpublished
technique for speeding up the Bigatti et.al. algorithm for
generic ideals. It is not used by CoCoA but we are looking
into including it for the benchmark of the Bigatti et.al. in
Frobby.

software Frobby Frobby CoCoA4
algorithm Corner-E. Bigatti ea. Bigatti ea.

generic 68s 1,359s 1,811s
nongeneric 37s 37s <1s
squarefree 156s 2s 4s
toric 73s 233s 531s

Table 3: Univariate Hilbert-Poincaré series.

119(3):237–253, 1997.

[4] Anna Maria Bigatti, Pasqualina Conti, Lorenzo
Robbiano, and Carlo Traverso. A “divide and conquer”
algorithm for Hilbert-Poincaré series, multiplicity and
dimension of monomial ideals. In Applied algebra,
algebraic algorithms and error-correcting codes (San
Juan, PR, 1993), volume 673 of Lecture Notes in
Comput. Sci., pages 76–88. Springer, Berlin, 1993.

[5] Anna Maria Bigatti and Eduardo Saenz de Cabezon.
(n-1)-st koszul homology and the structure of
monomial ideals. arXiv:0811.1013v1.

[6] CoCoATeam. CoCoA: a system for doing
Computations in Commutative Algebra. Available at
http://cocoa.dima.unige.it.

[7] Eduardo Saenz de Cabezon. Combinatorial koszul
homology: Computations and applications, 2008.
http://arxiv.org/abs/0803.0421.

[8] Ezra Miller and Bernd Sturmfels. Combinatorial
Commutative Algebra, volume 227 of Graduate Texts
in Mathematics. Springer, 2005.

[9] Ezra Miller, Bernd Sturmfels, and Kohji Yanagawa.
Generic and cogeneric monomial ideals. Journal of
Symbolic Computation, 29(4-5):691–708, 2000.
Available at
http://www.math.umn.edu/~ezra/papers.html.

[10] Bjarke Hammersholt Roune. The slice algorithm for
irreducible decomposition of monomial ideals. Journal
of Symbolic Computation, 44(4):358–381, April 2009.

