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Abstract

Irreducible decomposition of monomial ideals has an increasing number of applications from
biology to pure math. This paper presents the Slice Algorithm for computing irreducible de-
compositions, Alexander duals and socles of monomial ideals. The paper includes experiments
showing good performance in practice.
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1. Introduction

The main contribution of this paper is the Slice Algorithm, which is an algorithm
for the computation of the irreducible decomposition of monomial ideals. To irreducibly
decompose an ideal is to write it as an irredundant intersection of irreducible ideals.

Irreducible decomposition of monomial ideals has an increasing number of applications
from biology to pure math. Some examples of this are the Frobenius problem (Roune,
2008b; Einstein et al., 2007), the integer programming gap (Hoşten and Sturmfels, 2007),
the reverse engineering of biochemical networks (Jarrah et al., 2006), tropical convex hulls
(Block and Yu, 2006), tropical cyclic polytopes (Block and Yu, 2006), secants of monomial
ideals (Sturmfels and Sullivant, 2006), differential powers of monomial ideals (Sullivant,
2008) and joins of monomial ideals (Sturmfels and Sullivant, 2006).

Irreducible decomposition of a monomial ideal I has two computationally equivalent
guises. The first is as the Alexander dual of I (Miller, 1998), and indeed some of the
references above are written exclusively in terms of Alexander duality rather than irre-
ducible decomposition. The second is as the socle of the vector space R/I ′, where R is the
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polynomial ring that I belongs to and I ′ := I+〈xt
1, . . . , x

t
n〉 for some integer t >> 0. The

socle is central to this paper, since what the Slice algorithm actually does is to compute
a basis of the socle.

Section 2 introduces some basic notions we will need throughout the paper and Sec-
tion 3 describes an as-simple-as-possible version of the Slice Algorithm. Section 4 contains
improvements to this basic version of the algorithm and Section 5 discusses some heuris-
tics that are inherent to the algorithm. Section 6 examines applications of irreducible
decomposition, and it describes how the Slice Algorithm can use bounds to solve some
optimization problems involving irreducible decomposition in less time than would be
needed to actually compute the decomposition. Finally, Section 7 explores the practical
aspects of the Slice Algorithm including benchmarks comparing it to other programs for
irreducible decomposition.

The Slice Algorithm was in part inspired by an algorithm for Hilbert-Poincaré series
due to Bigatti et al. (1993). The Slice Algorithm generalizes versions of the staircase-
based algorithm due to Gao and Zhu (2005) (see Section 5.2) and the Label Algorithm
due to Roune (2007) (see Section 5.5).

2. Preliminaries

This section briefly covers some notation and background on monomial ideals that
is necessary to read the paper. We assume throughout the paper that I, J and S are
monomial ideals in a polynomial ring R over some arbitrary field κ and with variables
x1, . . . , xn where n ≥ 2. We also assume that a, b, p, q and m are monomials in R. When
presenting examples we use the variables x, y and z in place of x1, x2 and x3 for increased
readability.

2.1. Basic Notions From Monomial Ideals

If v ∈ Nn then xv := xv1
1 · · ·xvn

n . We define
√
xv := xsupp(v) where (supp(v))i :=

min(1, vi). Define π (m) := m√
m

such that e.g. π
(
x(0,1,2,3)

)
= x(0,0,1,2).

The rest of this section is completely standard. A monomial ideal I is an ideal gener-
ated by monomials, and min (I) is the unique minimal set of monomial generators. The
ideal 〈M〉 is the ideal generated by the elements of the set M . The colon ideal I : p is
defined as 〈m|mp ∈ I〉.

An ideal I is artinian if there exists a t ∈ N such that xt
i ∈ I for i = 1, . . . , n. A

monomial of the form xt
i is a pure power. A monomial ideal is irreducible if it is generated

by pure powers. Thus
〈
x2, y

〉
is irreducible while

〈
x2y
〉

is not. Note that 〈x〉 ⊆ κ[x, y] is
irreducible and not artinian.

Every monomial ideal I can be written as an irredundant intersection of irreducible
monomial ideals, and the set of ideals that appear in this intersection is uniquely given
by I. This set is called the irreducible decomposition of I, and we denote it by irr (I).
Thus irr

(〈
x2, xy, y3

〉)
=
{〈
x2, y

〉
,
〈
x, y3

〉}
.

The radical of a monomial ideal I is
√
I := 〈

√
m |m ∈ min (I) 〉. A monomial ideal I is

square free if
√
I = I. A monomial ideal is (strongly) generic if no two distinct elements

of min (I) raise the same variable xi to the same non-zero power (Bayer et al., 1998;
Miller et al., 2000). Thus

〈
x2y, xy2

〉
is generic while

〈
xyz2, xy2z

〉
is not as both minimal

generators raise x to the same power. In Section 7 we informally talk of a monomial ideal
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being more or less generic according to how many identical non-zero exponents there are
in min (I).

A standard monomial of I is a monomial that does not lie within I. The exponent
vector v ∈ Nn of a monomial m is defined by m = xv = xv1

1 · · ·xvn
n . Define degxi

(xv) := vi.
We draw pictures of monomial ideals in 2 and 3 dimensions by indicating monomials by
their exponent vector and drawing line segments separating the standard monomials from
the non-standard monomials. Thus Figure 1(a) displays a picture of the monomial ideal〈
x6, x5y2, x2y4, y6

〉
.

y6

x2y4

x5y2

x6

xy5

x4y3

x5y

x2y4

x5y2x4y3

(a) (b) (c)

Fig. 1. Examples of monomial ideals.

2.2. Maximal Standard Monomials, Socles And Decompositions

In this section we look into socles and their relationship with irreducible decomposi-
tion. We also note the well known fact that the maximal standard monomials of I form
a basis of the socle of R/I.

Given the generators min (I) of a monomial ideal I, the Slice Algorithm computes the
maximal standard monomials of I. We will need some notation for this.

Definition 1 (Maximal standard monomial). A monomial m is a maximal standard
monomial of I if m /∈ I and mxi ∈ I for i = 1, . . . , n. The set of maximal standard
monomials of I is denoted by msm (I).

The socle of R/I is the vector space of those m ∈ R/I such that mxi = 0 for i =
1, . . . , n. It is immediate that {m+ I |m ∈ msm (I)} is a basis of this socle.

Example 2. Let I :=
〈
x6, x5y2, x2y4, y6

〉
be the ideal in Figure 1(a). Then msm (I) ={

x5y, x4y3, xy5
}

as indicated in Figure 1(b). Let J :=
〈
x5y2, x2y4

〉
. Then msm (J) ={

x4y3
}

as indicated in Figure 1(c). Finally, msm
(〈
x5y2

〉)
= ∅.

We briefly describe the standard technique for obtaining irr (I) from msm (I) (Bayer
et al., 1998). Choose some integer t >> 0 and define φ(xm) =

〈
xmi+1

i |mi + 1 < t
〉
.

Proposition 3 (Miller and Sturmfels (2005, ex. 5.8)). The map φ is a bijection from
msm (I + 〈xt

1, . . . , x
t
n〉) to irr (I).

Example 4. Let I :=
〈
x2, xy

〉
and I ′ := I + 〈xt, yt〉 =

〈
x2, xy, y3

〉
where t = 3. Then

msm (I ′) =
{
x, y2

}
which φ maps to

{〈
x2, y

〉
, 〈x〉

}
= irr (I).
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2.3. Labels

We will have frequent use for the notion of a label.

Definition 5 (xi-label). Let d be a standard monomial of I and let m ∈ min (I). Then
m is an xi-label of d if m|dxi.

Note that if m is an xi-label of d, then degxi
(m) = degxi

(d) + 1. Also, a standard
monomial d is maximal if and only if it has an xi-label mi for i = 1, . . . , n. So in that
case dx1 · · ·xn = lcmn

i=1mi.

Example 6. Let I :=
〈
x2, xz, y2, yz, z2

〉
be the ideal in Figure 2(a). Then the maximal

standard monomials of I are msm (I) = {xy, z}. We see that z has xz as an x-label, yz
as a y-label and z2 as a z-label. Also, xy has x2 as an x-label and y2 as a y-label, while
it has both of xz and yz as z-labels.

Let J := I + 〈xy〉 be the ideal in Figure 2(b). Then msm (J) = {x, y, z}. Note that
even though xy divides z · xyz, it is not a label of z, because it does not divide z · x, z · y
or z · z.

(a) (b)

Fig. 2. Examples of monomial ideals.

3. The Slice Algorithm

In this section we describe a basic version of the Slice Algorithm. The Slice Algorithm
computes the maximal standard monomials of a monomial ideal given the minimal gen-
erators of that ideal.

A fundamental idea behind the Slice Algorithm is to consider certain subsets of
msm (I) that are represented as slices. We will define the meaning of the term slice
shortly. The algorithm starts out by considering a slice that represents all of msm (I).
It then processes this slice by splitting it into two simpler slices. This process continues
recursively until the slices are simple enough that it is easy to find any maximal standard
monomials within them.

From this description, there are a number of details that need to be explained. Sec-
tion 3.1 covers what slices are and how to split them while Section 3.2 covers the base
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case. Section 3.3 proves that the algorithm terminates and Section 3.4 contains a simple
pseudo-code implementation of the algorithm.

3.1. Slices And Splitting

In this section we explain what slices are and how to split them. We start off with the
formal definition of a slice and its content.

Definition 7 (Slice and content). A slice is a 3-tuple (I, S, q) where I and S are mono-
mial ideals and q is a monomial. The content of a slice is defined by con (I, S, q) :=
(msm (I) \ S)q.

Example 8 shows how this definition is used.

y6

x2y4

x5y2

x6

p
y3

xy

x4

y6

x5y2

x6

p

(a) (b) (c)

Fig. 3. Illustrations for example 8.

Example 8. Let I :=
〈
x6, x5y2, x2y4, y6

〉
and p := xy3. Then I is the ideal depicted in

Figure 3(a), where 〈p〉 is indicated by the dotted line and msm (I) =
{
x5y, x4y3, xy5

}
is indicated by the squares. We will compute msm (I) by performing a step of the Slice
Algorithm.

Let I1 be the ideal I : p =
〈
y3, xy, x4

〉
, as depicted in Figure 3(b), where msm (I1) ={

x3, y2
}

is indicated by the squares. As can be seen by comparing figures 3(a) and 3(b),
the ideal I1 corresponds to the part of the ideal I that lies within 〈p〉. Thus it is reasonable
to expect that msm (I1) corresponds to the subset of msm (I) that lies within 〈p〉, which
turns out to be true, since

msm (I1) p =
{
x4y3, xy5

}
= msm (I) ∩ 〈p〉 . (1)

It now only remains to compute msm (I) \ 〈p〉. Let I2 :=
〈
x6, x5y2, y6

〉
as depicted in

Figure 3(c), where msm (I2) :=
{
x5y, x4y5

}
is indicated by the squares. The dotted line

indicates that we are ignoring everything inside 〈p〉. It happens to be that one of the
minimal generators of I, namely x2y4, lies in the interior of 〈p〉, which allows us to ignore
that minimal generator. We are looking at I2 because

msm (I2) \ 〈p〉 =
{
x5y
}

= msm (I) \ 〈p〉 . (2)
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By combining Equation (1) and Equation (2), we can compute msm (I) in terms of
msm (I1), msm (I2) and p.

Using the language of slices, we have split the slice A := (I, 〈0〉 , 1) into the two
slices A1 := (I1, 〈0〉 , p) and A2 := (I2, 〈p〉 , 1). By Equations (1) and (2), we see that
con (A1) = msm (I) ∩ 〈p〉 and con (A2) = msm (I) \ 〈p〉. Thus

con (A) = msm (I) = con (A1) ∪ con (A2)

where the union is disjoint.

Having defined slices and their content, we can now explain how to split a slice into
two smaller slices. This is done by choosing some monomial p, called the pivot, and then
to consider the following trivial equation.

con (I, S, q) =
(

con (I, S, q) ∩ 〈qp〉
)
∪
(

con (I, S, q) \ 〈qp〉
)

(3)

The idea is to express both parts of this disjoint union as the content of a slice. This is
easy to do for the last part, since

con (I, S, q) \ 〈qp〉 = con (I, S + 〈p〉, q) .

Expressing the first part of the union as the content of a slice can be done using the
following equation, which we will prove at the end of this section.

msm (I) ∩ 〈p〉 = msm (I : p) p

which implies that (see Example 8)

con (I, S, q) ∩ 〈qp〉 = con (I : p, S : p, qp) .

Thus we can turn Equation (3) into the following.

con (I, S, q) = con (I : p, S : p, qp) ∪ con (I, S + 〈p〉, q) (4)

Equation (4) is the basic engine of the Slice Algorithm. We will refer to it and its parts
throughout the paper, and we need some terminology to facilitate this. The process of
applying Equation (4) is called a pivot split. We will abbreviate this to just split when
doing so should not cause confusion.

Equation (4) mentions three slices, and we give each of them a name. We call the left
hand slice (I, S, q) the current slice, since it is the slice we are currently splitting. We call
the first right hand slice (I : p, S : p, qp) the inner slice, since its content is inside 〈qp〉,
and we call the second right hand slice (I, S + 〈p〉 , q) the outer slice, since its content is
outside 〈qp〉.

It is not immediately obvious why it is easier to compute the outer slice’s content
con (I, S + 〈p〉, q) than it is to compute the current slice’s content con (I, S, q). The fol-
lowing equation shows how it can be easier. See Proposition 11 for a proof.

msm (I) \ S = msm (I ′) \ S, I ′ := 〈m ∈ min (I) |π (m) /∈ S 〉 (5)
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This implies that con (I, S, q) = con (I ′, S, q). In other words, we can discard any element
m of min (I) where π (m) lies within S. We will apply Equation (5) whenever it is of
benefit to do so, which it is when π (min (I)) ∩ S 6= ∅. This motivates the following
definition.

Definition 9 (Normal slice). A slice (I, S, q) is normal when π (min (I)) ∩ S = ∅.

Example 10. Let I, p and I2 be as in Example 8. Then (I, 〈p〉 , 1) is the outer slice after
a split on p. This slice is not normal, so we apply Equation 5 to get the slice (I2, 〈p〉 , 1),
which is the slice A2 from Example 8. See Figure 3 for illustrations.

Proposition 11 proves the equations in this section, and it establishes some results
that we will need later.

Proposition 11. Let I be a monomial ideal and let p be a monomial. Then
(1) gcd(min (I)) divides gcd(msm (I))
(2) msm (I) ∩ 〈p〉 = msm (I ∩ 〈p〉)
(3) If p| gcd(min (I)), then msm (I) = msm (I : p) p
(4) msm (I) ∩ 〈p〉 = msm (I : p) p
(5) msm (I) \ S = msm (I ′) \ S, I ′ := 〈m ∈ min (I) |π (m) /∈ S 〉

Proof. (1): Let d ∈ msm (I). Let li be an xi-label of d and let lj be an xj-label of d
where i 6= j. This is possible due to the assumption in Section 2 that n ≥ 2. Then li|dxi

and lj |dxj so gcd(min (I))| gcd(li, lj)|d.
(2): It follows from Lemma 12 below and (1) that

msm (I) ∩ 〈p〉 = msm (I ∩ 〈p〉) ∩ 〈p〉 = msm (I ∩ 〈p〉) .

(3): If p| gcd(min (I)) then p| gcd(msm (I)) by (1), whereby

d ∈ msm (I) ⇔ (d/p)p /∈ I and (d/p)xip ∈ I for i = 1, . . . , n

⇔ d/p /∈ I : p and (d/p)xi ∈ I : p for i = 1, . . . , n

⇔ d/p ∈ msm (I : p)⇔ d ∈ msm (I : p) p.

(4): As p| gcd(min (I ∩ 〈p〉)) and (I ∩ 〈p〉) : p = I : p, we see that

msm (I) ∩ 〈p〉 = msm (I ∩ 〈p〉) = msm ((I ∩ 〈p〉) : p) p = msm (I : p) p.

(5): Let d ∈ msm (I) \ S and let l ∈ min (I) be an xi-label of d. Then l ∈ min (I ′)
since π (l) |d /∈ S. Thus dxi ∈ I ′ since l|dxi, so d ∈ msm (I ′). Also d /∈ I ⊇ I ′.

Suppose instead that d ∈ msm (I ′) \ S. Then dxi ∈ I ′ ⊆ I. If d ∈ I then there
would exist an m ∈ min (I) \min (I ′) such that m|d, which is a contradiction since then
S 3 π (m) |m|d /∈ S. Thus d /∈ I whereby d ∈ msm (I). 2

Lemma 12. Let A, B and C be monomial ideals. Then A ∩ C = B ∩ C implies that
msm (A) ∩ C = msm (B) ∩ C.

Proof. Let d ∈ msm (A) ∩ C. We will prove that d ∈ msm (B).
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d /∈ B: If d ∈ B then d ∈ B ∩ C = A ∩ C but d /∈ A.
dxi ∈ B: Follows from dxi ∈ A and d ∈ C since then dxi ∈ A ∩ C = B ∩ C. 2

3.2. The Base Case

In this section we present the base case for the Slice Algorithm. A slice (I, S, q) is a
base case slice if I is square free or if x1 · · ·xn does not divide lcm(min (I)). Propositions
13 and 14 show why base case slices are easy to handle.

Proposition 13. If x1 · · ·xn does not divide lcm(min (I)), then msm (I) = ∅.

Proof. If msm (I) 6= ∅ then there exists some d ∈ msm (I). Let m ∈ min (I) be an xi-label
of d. Then xi|m, so xi|m| lcm(min (I)). 2

Proposition 14. If I is square free and I 6= 〈x1, . . . , xn〉, then msm (I) = ∅.

Proof. Let I be square free and let d ∈ msm (I). Let mi ∈ min (I) be an xi-label of d for
i = 1, . . . , n. Then d = π (lcmn

i=1mi) = 1 so mi = xi. 2

3.3. Termination And Pivot Selection

In this section we show that some quite weak constraints on the choice of the pivot are
sufficient to ensure termination. Thus we leave the door open for a variety of different
pivot selection strategies, which is something we will have much more to say about in
Section 5.

We impose four conditions on the choice of the pivot p. These are presented below, and
for each condition we explain why violating that condition would result in a split that
there is no sense in carrying out. Note that the last two conditions are not necessary at
this point to ensure termination, but they will become so after some of the improvements
in Section 4 are applied.
• p /∈ S: If p ∈ S, then the outer slice will be equal to the current slice.
• p 6= 1: If p = 1, then the inner slice will be equal to the current slice.
• p /∈ I: See Section 4.4 and Equation (7) in particular.
• p|π (lcm(min (I))): See Section 4.5 and Equation (8) in particular.

If a pivot satisfies these four conditions, then we say that it is valid. Proposition 15
shows that non-base case slices always admit valid pivots, and Proposition 16 states that
selecting valid pivots ensures termination.

Proposition 15. Let (I, S, q) be a normal slice for which no valid pivot exists. Then I
is square free.

Proof. Suppose I is not square free. Then there exists an xi such that x2
i |m for some

m ∈ min (I), which implies that xi /∈ I. Also, xi /∈ S since xi|π (m) and (I, S, q) is
normal. We conclude that xi is a valid pivot. 2

Proposition 16. Selecting valid pivots ensures termination.

Proof. Recall that the polynomial ring R is Noetherian, so it does not contain an infi-
nite sequence of strictly increasing ideals. We will use this to show that the algorithm
terminates. Suppose we are splitting a non-base case slice A := (I, S, q) on a valid pivot
where A1 is the inner slice and A2 is the outer slice.
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Let f and g be functions mapping slices to ideals, and define them by the expressions
f(I, S, q) := S and g(I, S, q) := 〈lcm(min (I))〉. Then the conditions on valid pivots and
on non-base case slices imply that f(A) ⊆ f(A1), f(A) ( f(A2), g(A) ( g(A1) and
g(A) ⊆ g(A2). Also, if we let A be an arbitrary slice and we let A′ be the corresponding
normal slice, then f(A) ⊆ f(A′) and g(A) ⊆ g(A′).

Thus f and g never decrease, and one of them strictly increases on the outer slice
while the other strictly increases on the inner slice. Thus there does not exist an infinite
sequence of splits on valid pivots. 2

3.4. Pseudo-code

This section contains a pseudo-code implementation of the Slice Algorithm. Note that
the improvements in Section 4 are necessary to achieve good performance.

The function selectPivot used below returns some valid pivot and can be implemented
according to any of the pivot selection strategies presented in Section 5. A simple idea is
to follow the proof of Proposition 15 and test each variable x1, . . . , xn for whether it is a
valid pivot. If none of those are valid pivots, then I ′ in the pseudo-code below is square
free.

Call the function con below with the parameters (I, 〈0〉 , 1) to obtain msm (I).
function con(I, S, q)

let I ′ := 〈m ∈ min (I) |π (m) /∈ S 〉

if x1 · · ·xn does not divide lcm(min (I ′)) then return ∅
if I ′ is square free and I ′ 6= 〈x1, . . . , xn〉 then return ∅
if I ′ is square free and I ′ = 〈x1, . . . , xn〉 then return {q}

let p := selectPivot(I ′, S)
return con (I ′ : p, S : p, qp) ∪ con (I ′, S + 〈p〉, q)

4. Improvements To The Basic Algorithm

This section contains a number of improvements to the basic version of the Slice
Algorithm presented in Section 3.

4.1. Monomial Lower Bounds On Slice Contents

Let ql be a monomial lower bound on the slice (I, S, q) in the sense that ql|d for all
d ∈ con (I, S, q). If we then perform a split on l, we can predict that the outer slice will
be empty, whereby Equation (4) specializes to Equation (6) below, which shows that we
can get the effect of performing a split while only having to compute a single slice.

con (I, S, q) = con (I : l, S : l, ql) (6)

Proposition 11 provides the simple monomial lower bound gcd(min (I)), while Propo-
sition 17 provides a more sophisticated bound.
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Proposition 17. Let (I, S, q) be a slice and let l(I) := lcmn
i=1 li where

li :=
1
xi

gcd(min (I) ∩ 〈xi〉).

Then ql(I) is a monomial lower bound on (I, S, q).

Proof. Let d ∈ msm (I) and let m be an xi-label of d. Then xi|m, so lixi|m|dxi whereby
li|d. Thus l(I)|d. 2

Example 18. Let I :=
〈
x2y, xy2, yz, z2

〉
. Then l(I) = y and Equation (6) yields

con (I, 〈0〉, 1) = con (I : y, 〈0〉, y) ,

where I : y =
〈
x2, xy, z

〉
. As l(I : y) = x we can apply Equation (6) again to get

con (I : y, 〈0〉, y) = con (〈x, y, z〉, 〈0〉, xy) = {xy} .

We can improve on this bound using Lemma 20 below.

Definition 19 (xi-maximal). A monomial m ∈ min (I) is xi-maximal if

0 < degxi
(m) = degxi

(lcm(min (I))) .

Lemma 20. Let d ∈ msm (I) and let m be an xi-label of d. Suppose that m is xj-
maximal for some variable xj . Then xi = xj .

Proof. Suppose that xi 6= xj and let l be an xj-label of d. Then

degxj
(m) ≤ degxj

(d) < degxj
(l) ≤ degxj

(lcm(min (I))) = degxj
(m) . 2

Corollary 21. If m ∈ min (I) is xi-maximal for two distinct variables, then msm (I) =
msm (I ′) where I ′ := 〈min (I) \ {m}〉.

Corollary 22. Let (I, S, q) be a slice and let li := 1
xi

gcd(Mi) where

Mi := {m ∈ min (I) |xi divides m and m is not xj-maximal for any xj 6= xi } .

Then q lcmn
i=1 li is a monomial lower bound on (I, S, q).

It is possible to compute a more exact lower bound by defining M(i,j) and computing
the gcd of pairs of minimal generators that could simultaneously be respectively xi and
xj-labels. However, we expect the added precision to be little and the computational cost
is high. If this is expanded from 2 to n variables, the lower bound is exact, but as costly
to compute as the set msm (I) itself.

Corollaries 21 and 22 allow us to make a slice simpler without changing its content,
and they can be iterated until a fixed point is reached. We call this process simplification,
and a slice is fully simplified if it is a fixed point of the process. Proposition 23 is an
example of how simplification extends the reach of the base case.

10



Proposition 23. Let A := (I, S, q) be a fully simplified slice. If |min (I)| ≤ n then A is
a base case slice.

Proof. Assume that x1 · · ·xn| lcm(min (I)). Then for each variable xi, there must be some
mi ∈ min (I) that is xi-maximal, and these mi are all distinct. Since |min (I)| ≤ n this
implies that min (I) = {m1, . . . ,mn}. Thus Mi = {mi} where Mi is defined in Corollary
22. Furthermore, since A is fully simplified, 1

xi
gcd(Mi) = 1, so mi = xi and we are

done. 2

An argument much like that in the proof of Proposition 23 shows that (I, S, q) is a
base case if all elements of min (I) are maximal. If there is exactly one element m of
min (I) that is not maximal, then one can construct a new base case for the algorithm
by trying out the possibility of that generator being an xi-label for each xi|m. One can
do the same if there are k non-maximal elements for any k ∈ N, but the time complexity
of this is exponential in k, so it is slow for large k.

Our implementation does this for k = 1, 2, and implementing k = 2 did make our
program a bit faster. We expect the effect of implementing k = 3 would be very small or
even negative.

4.2. Independence Splits

In this section we define I-independence and we show how this independence allows
us to perform a more efficient kind of split. The content of this section was inspired by a
similar technique for computing Hilbert-Poincaré series that was first suggested by Bayer
and Stillman (1992) and described in more detail by Bigatti et al. (1993).

Definition 24. Let A,B be non-empty disjoint sets such that A ∪ B = {x1, . . . , xn}.
Then A and B are I-independent if min (I) ∩ 〈A〉 ∩ 〈B〉 = ∅.

In other words, A and B are I-independent if no element of min (I) is divisible by
both a variable in A and a variable in B.

Example 25. Let I :=
〈
x4, x2y2, y3, z2, zt, t2

〉
. Then {x, y} and {z, t} are I-independent.

It then turns out that we can compute msm (I) independently for {x, y} and {z, t}, which
is reflected in the following equation.

msm (I) =
{
x3yz, x3yt, xy2z, xy2t

}
=
{
x3y, xy2

}
· {z, t}

= msm (I ∩ κ[x, y]) ·msm (I ∩ κ[z, t])

Proposition 26 generalizes the observation in Example 25. The process of applying
Proposition 26 is called an independence split.

Proposition 26. If A,B are I-independent, then

msm (I) = msm (I ∩ κ[A]) ·msm (I ∩ κ[B]) .

Proof. Let A′ := I∩κ[A] and B′ := I∩κ[B]. If A′ = 〈0〉 then msm (I) = ∅ by Proposition
13, so we can assume that A′ 6= 〈0〉 and B′ 6= 〈0〉. It holds that

min (I) = min (A′) ∪min (B′)

11



so for monomials a ∈ κ[A] and b ∈ κ[B] we get that

ab ∈ I ⇔ a ∈ A′ or b ∈ B′

and thereby

ab /∈ I ⇔ a /∈ A′ and b /∈ B′

which implies that

ab ∈ msm (I)⇔ ab /∈ I and abxi ∈ I for xi ∈ A ∪B

⇔ a /∈ A′ and axi ∈ A′ for xi ∈ A and

b /∈ B′ and bxi ∈ B′ for xi ∈ B

⇔ a ∈ msm (A′) and b ∈ msm (B′) . 2

Given a slice (I, S, q), this brings up the problem of what to do about S when A and
B are I-independent but not S-independent. There are two simple ways to by-pass this
issue entirely. The first is to only use pivots that are pure powers, in which case S will
be generated by pure powers, so any two sets of variables will be S-independent. The
second is to perform independence splits only when there is both I-independence and
S-independence.

It is possible to deal with non-S-independence in a more direct way. First remove the
elements of min (S)∩〈A〉∩〈B〉 from min (S) when doing the independence split. Then re-
move those computed maximal standard monomials that lie within 〈min (S) ∩ 〈A〉 ∩ 〈B〉〉.

Example 27. Let I be as in Example 25 and consider the slice (I,
〈
x3y, y2z

〉
, 1). Then

y2z belongs to neither κ[x, y] nor κ[z, t], but we can do the independence split on the
slice (I,

〈
x3y
〉
, 1) which has content

{
xy2
}
·{z, t} =

{
xy2z, xy2t

}
. We then remove

〈
y2z
〉

from this set, whereby con
(
I,
〈
x3y, x2z

〉
, 1
)

=
{
xy2t

}
.

This idea can be improved by observing that when we know con (A′, SA, qA), we can
easily get the monomial lower bound gcd(con (A′, SA, qA)), and we can exploit this using
the technique from Section 4.1. This might decrease the size of min (S)∩〈A〉∩〈B〉, which
can help us compute con (B′, SB , qB).

Example 28. Let I :=
〈
x2, xy, xz, yz, a2, ab, b2

〉
and consider the slice (I, 〈xa〉 , 1). Then

{x, y, z} and {a, b} are I-independent, and the first slice from the independence split is
(
〈
x2, xy, xz, yz

〉
, 〈0〉 , 1), where we are removing xa from min (S) since it crosses the split.

That slice has content {x}, so x is a lower bound, and we can use the technique from
Section 4.1 to go to the inner slice on a pivot split by x, which is

(I : x, 〈xa〉 : x, x) = (
〈
x, y, z, a2, ab, b2

〉
, 〈a〉 , 1).

Note that while ax crosses the split, ax : x = a does not, so now we also have S-
independence while originally we did not.

12



This leaves the question of how to detect I-independence. This can be done in space
O(n) and nearly in time O(n |min (I)|) using the classical union-find algorithm (Galler
and Fisher, 1964; Cormen et al., 2001). 1 See the pseudo-code below, whereD represents a
disjoint-set data structure such that union(D,xi, xj) merges the set containing xi with the
set containing xj . At the end D is the set of independent sets where D = {{x1, . . . , xn}}
implies that there are no independent sets. The running time claimed above is achieved
by using a suitable data structure for D along with an efficient implementation of union.
See Galler and Fisher (1964); Cormen et al. (2001) for details.

let D := {{x1} , . . . , {xn}}.
for each m ∈ min (I) do

pick an arbitrary xi that divides m
for each xj that divides m do

union(D,xi, xj)
This is an improvement on the O(n2 |min (I)|) algorithm for detecting independence

suggested by Bigatti et al. (1993). That algorithm is similar to the one described here,
the main difference being the choice of data structure.

4.3. A Base Case Of Two Variables

When n = 2 there is a well known and more efficient way to compute msm (I). This
is also useful when an independence split has reduced n down to two.

Let {m1, . . . ,mk} := min (I) where m1,. . . ,mk are sorted in ascending lexicographic
order such that x1 > x2. Let τ(xu, xv) := x(v1,u2). Then

msm (I) = {τ(m1,m2), τ(m2,m3), . . . , τ(mk−1,mk)} .

4.4. Prune S

Depending on the selection strategy used, it is possible for the S in (I, S, q) to pick up
a large number of minimal generators, which can slow things down. Thus there is a point
to removing elements of min (S) when that is possible without changing the content of
the slice. Equation (7) allows us to do this.

con (I, S, q) = con (I, S′, q) , S′ := 〈m ∈ min (S) |m /∈ I 〉 (7)

Example 29. Consider the slice (
〈
x2, y2, z2, yz

〉
, 〈xyz〉 , 1). Then p := x is a valid pivot,

yielding the inner slice (
〈
x, y2, z2, yz

〉
, 〈yz〉 , x). We can now apply Equation (7) to turn

this into (
〈
x, y2, z2, yz

〉
, 〈0〉 , x).

Proposition 16 states that the Slice Algorithm terminates, and we need to prove that
this is still true when we use Equation (7). Fortunately, the same proof can be used,
except that the definition of the function f needs to be changed from f(I, S, q) = S to
f(I, S, q) := I +S. Note that the condition on a valid pivot p that p /∈ I is there to make
this work.

1 It can also be done in space O(n2) and in time O(n |min (I)|+n2) by constructing a graph in a similar

way and then finding connected components.
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4.5. More Pruning of S

We can prune S using Equation (8) below, and for certain splitting strategies this will
even allow us to never add anything to S.

con (I, S, q) = con (I, S′, q) , S′ := 〈m ∈ min (S) |m divides π (lcm(min (I))) 〉 (8)

To prove this, observe that any d ∈ con (I, S, q) divides π (lcm(min (I))).

Example 30. Consider the slice (
〈
x2, xy, y2

〉
, 〈0〉 , 1). Then p := x is a valid pivot,

yielding the normalized outer slice (
〈
xy, y2

〉
, 〈x〉 , 1). We can now apply Equation (8) to

turn this into (
〈
xy, y2

〉
, 〈0〉 , 1).

Similarly, Equation (8) will remove any generator of the form xt
i from S. So if we use

a pivot of the special form p = xt
i, and we apply a normalization and Equation (8) to

the outer slice, we can turn Equation (4) into

con (I, S, q) = con (I : p, S : p, qp) ∪ con (〈min (I) \ 〈pxi〉〉, S, q)

which for S = 〈0〉 and q = 1 specializes to

msm (I) = msm
(
I : xt

i

)
xt

i ∪ msm
(〈

min (I) \
〈
xt+1

i

〉〉)
An implementer who does not want to deal with S might prefer this equation to the
more general Equation (4).

We need to prove that the algorithm still terminates when using equations (7) and
(8). We can use the same proof as in Proposition 16, except that we need to replace the
definition of f from that proof with f(I, S, q) := I + S + 〈xu1

1 , . . . , xun
n 〉 where xu :=

lcm(min (I)). Note that the condition on a valid pivot p that p|π (lcm(min (I))) is there
to make this work.

4.6. Minimizing The Inner Slice

A time-consuming step in the Slice Algorithm is to compute I : p for each inner
slice (I : p, S : p, qp). By minimizing, we mean the process of computing min (I : p)
from min (I), which is done by removing the non-minimal elements of min (I) : p :=
{m : p |m ∈ min (I)} where m : p := m

gcd(m,p) .
Proposition 31 below makes it possible to do this using fewer divisibility tests than

would otherwise be required. As seen by Corollary 32 below, this generalizes both state-
ments of Bigatti (1997, Proposition 1) from p of the form xt

i to general p. 2 See Bigatti
et al. (1993, Section 6) for an even earlier form of these ideas.

Note that the techniques in this section also apply to computing intersections I∩〈p〉 of
a monomial ideal with a principal ideal generated by a monomial, since min (I ∩ 〈p〉) =
{lcm(m, p) |m ∈ min (I : p)}.

2 This provides an answer to the statement of Bigatti (1997, p. 11) that “These remarks drastically
reduce the number of divisibility tests, but they do not easily generalize for non-simple-power pivots,
not even for power-products with only two indeterminates.”
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The most straightforward way to minimize min (I) : p is to consider all pairs of distinct
a, b ∈ min (I) : p and then to remove b if a|b. It is well known that this can be improved
by sorting min (I) : p according to some term order, in which case a pair only needs to be
considered if the first term comes before the last. This halves the number of divisibility
tests that need to be carried out.

We can go further than this, however, because we know that min (I) is already mini-
mized. Proposition 31 shows how we can make use of this information.

Proposition 31. Let xa, xb and xp be monomials such that xa does not divide xb. Then
xa : xp does not divide xb : xp if it holds for i = 1, . . . , n that pi < ai ∨ ai ≤ bi.

Proof. We prove the contrapositive statement, so suppose that xa does not divide xb

and that xu := xa : xp divides xv := xb : xp. Then there is an i such that ai > bi. As
max(pi, ai) = ui + pi ≤ vi + pi = max(pi, bi) we conclude that pi ≥ ai. 2

This allows us to draw some simple and useful conclusions.

Corollary 32. Let a, b ∈ min (I) and let p be a monomial. Then a : p does not divide
b : p if any one of the following two conditions is satisfied.

(1)
√
a =
√
a : p

(2) gcd(a, p)| gcd(b, p)

Corollary 33. If a ∈ min (I) and p|π (a), then a : p is an element of min (I : p) and a : p
does not divide any other element of min (I) : p.

We can push Proposition 31 further than this. Fix some monomial p and define the
binary relation ≺ on monomials by

a ≺ b if there exists an i ∈ {1, . . . , n} such that degxi
(p) ≥ degxi

(a) > degxi
(b).

It is immediate from Proposition 31 that if a does not divide b, and a ⊀ b, then a : p
does not divide b : p. So informally speaking it holds that a ≺ b when a : p could divide
b : p even when taking Proposition 31 into account.

There is no point to using ≺ for the purpose of checking whether a single given
element of min (I) : p divides another, as then we could just as well use an actual check
for divisibility. To obtain a benefit from ≺, we partition min (I) into sets such that ≺
cannot tell the difference between any two elements from the same set. We define this
partition by the equivalence classes of the binary relation ∼ defined on monomials by

a ∼ b if gcd(a, p
√
p) = gcd(b, p

√
p).

We note that if a, b, c, d are monomials and a ∼ b and c ∼ d, then

a ≺ c⇔ b ≺ d.

Now define L(a) as the equivalence class that a belongs to according to ∼, i.e.

L(a) := {m ∈ min (I) |m ∼ a} .
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We can now deal with the equivalence classes L(a) instead of with each individual element
of min (I). This is an advantage if L(a) is large, since a single comparison will tell us how
two whole equivalence classes compare according to ≺ instead of having to compare each
element from the one equivalence class with each element from the other. We summarize
the results in this section as follows.

Corollary 34. Let p be a monomial. If a, b ∈ min (I) and a ⊀ b, then no element of
L(a) : p divides any element of L(b) : p. In particular, no element of L(a) : p divides any
other.

Corollary 34 makes use of all the information provided by Proposition 31. Thus it is
not surprising that it has Corollary 32 and Corollary 33 as special cases.

This technique works best when most of the non-empty sets L(a) contain considerably
more than a single element, which is likely to be true e.g. if p is a small power of a single
variable. Even in cases where most of the non-empty sets L(a) consist of only a few
elements, it will likely still pay off to consider L(1) and L(p

√
p). 3

Example 35. Let I :=
〈
x5y, x2y2, x2z3, xy3, xyz3, yz2

〉
and p := x3. Then

L(x4) =
{
x5y
}

L(x4) : p =
{
x2y
}

L(x2) =
{
x2y2, x2z3

}
L(x2) : p =

{
y2, z3

}
L(x) =

{
xy3, xyz3

}
L(x) : p =

{
y3, yz3

}
L(1) =

{
yz2
}

L(1) : p =
{
yz2
}
.

We will process these sets from the top down. The set L(x4) is easy, since p|π
(
x5y
)
, so

we do not have to do any divisibility tests for x5y : p.
Then comes L(x2). We have to test if any elements of L(x2) : p divide any elements

of L(x) : p or L(1) : p. It turns out that x2y2 : p|xy3 : p and x2z3 : p|xyz3 : p, so we can
remove all of L(x) from consideration. We do not need to do anything more for L(1), so
we conclude that min (I : p) =

〈
x2y, y2, z3, yz2

〉
.

4.7. Reduce The Size Of Exponents

Some applications require the irreducible decomposition of monomial ideals I where
the exponents that appear in min (I) are very large. One example of this is the compu-
tation of Frobenius numbers (Roune, 2008b; Einstein et al., 2007).

This presents the practical problem that these numbers are larger than can be natively
represented on a modern computer. This necessitates the use of an arbitrary precision
integer library, which imposes a hefty overhead in terms of time and space. One solution
to this problem is to report an error if the exponents are too large, as indeed the programs
Monos (Milowski, 2007) and Macaulay 2 (Grayson and Stillman, 2007) do for exponents
larger than 215 − 1 and 231 − 1 respectively.

3 Our implementation in Frobby considers all the L(a) when p is a pure power, while considering only

L(1) and L(p
√

p) when p is not a pure power. In general it should pay off to be more sophisticated about

this when p is not a pure power, but p is almost always a pure power when using the default settings for
Frobby, so in our case there would be little benefit.
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In this section, we will briefly describe how to support arbitrarily large exponents
without imposing any overhead except for a quick preprocessing step. The most time-
consuming part of this preprocessing step is to sort the exponents.

Let f be a function mapping monomials to monomials such that f(ab) = f(a)f(b)
when gcd(a, b) = 1. Suppose that a|b⇒ f(a)|f(b) and that f is injective for each i when
restricted to the set {xvi

i |xv ∈ min (I)}. The reader may verify that then

x1 · · ·xn msm (I) = f−1(x1 · · ·xn msm (〈f(min (I))〉)).

The idea is to choose f such that the exponents in f(min (I)) are as small as possible,
which can be done by sorting the exponents that appear in min (I). If this is done
individually for each variable, then |min (I)| is the largest integer that can appear as an
exponent in f(min (I)). Thus we can compute msm (I) in terms of msm (〈f(min (I))〉),
which does not require large integer computations.

Example 36. If I :=
〈
x100, x40y20, y90

〉
then we can choose the function f such that

〈f(min (I))〉 =
〈
x2, xy, y2

〉
.

The underlying mathematical idea used here is that it is the order rather than the
value of the exponents that matters. This idea can also be found e.g. in Bayer et al.
(1998, Remark 4.6), though in the present paper it is used to a different purpose.

4.8. Label Splits

In this section we introduce label splits. These are based on some properties of labels
which pivot splits do not make use of.

Let (I, S, q) be the current slice, and assume that it is fully simplified and not a base
case slice. The first step of a label split is then to choose some variable xi such that
min (I) ∩ 〈xi〉 6= {xi}. Let L := {xu ∈ min (I) |ui = 1}. Then L is non-empty since the
current slice is fully simplified. Assume for now that |L| = 1 and let l ∈ L.

Observe that if d ∈ msm (I), then l
xi
|d if and only if l is an xi-label of d, which is true

if and only if xi does not divide d. This and Equation (3.1) implies that

con (I, S, 1) \ 〈xi〉 = con (I, S, 1) ∩
〈
l

xi

〉
= con

(
I :

l

xi
, S :

l

xi
,
l

xi

)
con (I, S, 1) ∩ 〈xi〉 = con (I : xi, S : xi, xi)

whereby

con (I, S, q) = con (I : xi, S : xi, qxi) ∪ con
(
I :

l

xi
, S :

l

xi
, q

l

xi

)
This equation describes a label split on xi in the case where |L| = 1. In general |L| can
be larger than one, so let L = {l1, . . . , lk} and define

Ij := I:
lj
xi
, Sj :=

(
S +

〈
l1
xi
, . . . ,

lj−1

xi

〉)
:
lj
xi
, qj := q

lj
xi
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for j = 1, . . . , k. Then con (Ij , Sj , qj) is the set of those d ∈ con (I, S, q) such that lj is
an xi-label of d, and such that none of the monomials l1, . . . , lj−1 are xi-labels of d. This
implies that

con (I, S, q) = con (I : xi, S : xi, qxi)
k⋃

j=1

con (Ij , Sj , qj) (9)

where the union is disjoint. This equation defines a label split on xi.
An advantage of label splits is that if I is artinian, S = 〈0〉 and |L| = 1, then none of

the slices on the right hand side of Equation (9) are empty. These conditions will remain
true throughout the computation if the ideal is artinian and generic and we perform only
label and independence splits. Example 37 shows that a label split can produce empty
slices when |L| > 1.

Example 37. Let I :=
〈
x4, y4, z4, xy, xz

〉
. We perform a label split on x where l1 := xy

and l2 := xz, which yields the following equation.

con (I, 〈0〉, 1) = con
(〈
x3, y, z

〉
, 〈0〉, x

)
(this is (I : xi, S : xi, qxi))

∪ con
(〈
x, y3, z4

〉
, 〈0〉, y

)
(this is (I1, S1, q1))

∪ con
(〈
x, y4, z3

〉
, 〈y〉, z

)
(this is (I2, S2, q2))

=
{
x3
}
∪
{
y3z3

}
∪ ∅ =

{
x3, y3z3

}
The reason that (I2, S2, q2) is empty is that both l1 and l2 are x-labels of y3z3.

Using only label splits according to the VarLabel strategy discussed in Section 5.5
makes the Slice Algorithm behave as a version of the Label Algorithm (Roune, 2007).
See the External Corner Algorithm (Einstein et al., 2007) for an earlier form of some of
the ideas behind the Label Algorithm.

5. Split Selection Strategies

We have not specified how to select the pivot monomial when doing a pivot split, or
when to use a label split and on what variable. The reason for this is that there are many
possible ways to do it, and it is not clear which one is best. Indeed, it may be that one
split selection strategy is far superior to everything else in one situation, while being far
inferior in another. Thus we examine several different selection strategies in this section.

We are in the fortunate situation that an algorithm for computing Hilbert-Poincaré
series has an analogous issue of choosing a pivot (Bigatti et al., 1993). Thus we draw on
the literature on that algorithm to get interesting pivot selection strategies (Bigatti et al.,
1993; Bigatti, 1997), even though these strategies do have to be adapted to work with
the Slice Algorithm. The independence and label strategies are the only ones among the
strategies below that is not similar to a known strategy for the Hilbert-Poincaré series
algorithm.

It is assumed in the discussion below that the current slice is fully simplified and not
a base case slice. Note that all the strategies select valid pivots only. We examine the
practical merit of these strategies in Section 7.2.
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5.1. The Minimal Generator Strategy

We abbreviate this as MinGen.
Selection This strategy picks some element m ∈ min (I) that is not square free and

then selects the pivot π (m).
Analysis This strategy chooses a pivot that is maximal with respect to the property

that it removes at least one minimal generator from the outer slice. This means that
the inner slice is easy, while the outer slice is comparatively hard since we can be
removing as little as a single minimal generator.

5.2. The Pure Power Strategies

There are three pure power strategies.
Selection These strategies choose a variable xi that maximizes |min (I) ∩ 〈xi〉| provided

that x2
i | lcm(min (I)). Then they choose some positive integer e for which it holds that

xe+1
i | lcm(min (I)) and select the pivot xe

i .
The strategy Minimum selects e := 1 and the strategy Maximum selects e :=

degxi
(lcm(min (I))) − 1. The strategy Median selects e as the median exponent of

xi from the set min (I) ∩ 〈xi〉.
Note that the Minimum strategy makes the Slice Algorithm behave as a version of

the staircase-based algorithm due to Gao and Zhu (2005).
Analysis The pure power strategies have the advantage that the minimization tech-

niques described in Section 4.6 work especially well for pure power pivots. Maximum
yields an easy inner slice and a hard outer slice, while Minimum does the opposite.
Median achieves a balance between the two.

5.3. The Random GCD Strategy

We abbreviate this as GCD.
Selection Let xi be a variable that maximizes |min (I) ∩ 〈xi〉| and pick three ran-

dom monomials m1,m2,m3 ∈ min (I) ∩ 〈xi〉. Then the pivot is chosen to be p :=
π (gcd(m1,m2,m3)). If p = 1, then the GCD strategy fails, and we might try again or
use a different selection strategy.

Analysis We consider this strategy because a similar strategy has been found to work
well for the Hilbert-Poincaré series algorithm mentioned above.

5.4. The Independence Strategy

We abbreviate this as Indep.
Selection The independence strategy picks two distinct variables xi and xj , and then se-

lects the pivot p := π (gcd(min (I) ∩ 〈xixj〉)). If p = 1, then the independence strategy
fails, and we might try again or use a different selection strategy.

Analysis The pivot p is the maximal monomial that will make every minimal generator
that is divisible by both xi and xj disappear from the outer slice. The idea behind this
is to increase the chance that we can perform an independence split on the outer slice
while having a significant impact on the inner slice as well.
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5.5. The Label Strategies

There are three label strategies.
Selection These strategies choose a variable xi such that min (I) ∩ 〈xi〉 6= {xi} and

then perform a label split on xi. The strategy MaxLabel maximizes |min (I) ∩ 〈xi〉|,
VarLabel minimizes i and MinLabel minimizes |{xu ∈ min (I) |vi = 1}| while breaking
ties according to MaxLabel.

Note that the VarLabel strategy makes the Slice Algorithm behave as a version of
the Label Algorithm (Roune, 2007).

Analysis MaxLabel chooses the variable that will have the biggest impact, while Min-
Label avoids considering as many empty slices by keeping |min (S)| small. MinLabel
is being considered due to its relation to the Label Algorithm.

6. Applications To Optimization

Sometimes we compute a socle or an irreducible decomposition because we want to
know some property of it rather than because we are interested in knowing the socle or
decomposition itself. This kind of situation often has the form

maximize v(J) subject to J ∈ irr (I) ,

where v is some function mapping irr (I) to R. We call such a problem an Irreducible
Decomposition Program (IDP). As described in sections 6.3 and 6.4, applications of IDP
include computing the integer programming gap, Frobenius numbers and the codimension
of a monomial ideal.

The Slice Algorithm can solve some IDPs in much less time than it would need to
compute all of irr (I), and that is the subject of this section. Section 6.1 explains the
general principle of how to do this, while Section 6.2 provides some useful techniques for
making use of the principle. Sections 6.3 and 6.4 present examples of how to apply these
techniques.

6.1. Branch And Bound Using The Slice Algorithm

In this section we explain the general principle of solving IDPs using the Slice Algo-
rithm.

The first issue is that the Slice Algorithm is concerned with computing maximal
standard monomials while IDPs are about irreducible decomposition. We deal with this
by using the function φ from Section 2.2 to reformulate an IDP of the form

maximize v′(J) subject to J ∈ irr (I ′)

into the form

maximize v(d) subject to d ∈ msm (I)

where v(d) := v′(φ(d)) and I := I ′ + 〈xt
1, . . . , x

t
n〉 for some t >> 0.

It is a simple observation that there is no reason to compute all of msm (I) before
beginning to pick out the element that yields the greatest value of v. We might as well
not store msm (I), and only keep track of the greatest value of v found so far.
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We define a function b(I, S, q) that maps slices (I, S, q) to real numbers to be an upper
bound if d ∈ con (I, S, q) implies that v(d) ≤ b(I, S, q). We will now show how to use such
an upper bound b to turn the Slice Algorithm into a branch and bound algorithm.

Suppose that the Slice Algorithm is computing the content of a slice (I, S, q), and
that b(I, S, q) is less than or equal to the greatest value of v found so far. Then we can
skip the computation of con (I, S, q), since no element of con (I, S, q) improves upon the
greatest value of v found so far.

We can take this a step further by extending the idea of monomial lower bounds from
Section 4.1. The point there was that if we can predict that the outer slice of some pivot
split will be empty, then we should perform that split and ignore the outer slice. That
way we get the benefit of a split while only having to examine a single slice. In the same
way, if we can predict that one slice of some pivot split will not be able to improve upon
the best value found so far, we should perform the split and ignore the non-improving
slice. The hard part is to come up with a way to find pivots where such a prediction can
be made. Sections 6.3 and 6.4 provide examples of how this can be done.

A prerequisite for applying the ideas in this section is to construct a bound b. It is
not possible to say how to do this in general, since it depends on the particulars of the
problem at hand, but Section 6.2 presents some ideas that can be helpful.

6.2. Monomial Bounds

In this section we present some ideas that can be useful when constructing upper
bounds for IDPs of the form

maximize v(d) subject to d ∈ msm (I) .

Suppose that v is decreasing in the sense that if a|b then v(a) ≥ v(b). Then b(I, S, q) :=
v(q) is an upper bound, since if d ∈ con (I, S, q) then q|d so v(d) ≤ v(q).

Suppose instead that v is increasing in the sense that if a|b then v(a) ≤ v(b). Then
b(I, S, q) := v(qπ (lcm(min (I)))) is an upper bound, since if d ∈ con (I, S, q) then
d|qπ (lcm(min (I))) by Proposition 38 below, so v(d) ≤ v(qπ (lcm(min (I)))). Any mono-
mial upper bound on con (I, S, q) yields an upper bound in the same way.

Proposition 38. If d ∈ msm (I) then d|π (lcm(min (I))).

Proof. Let d ∈ msm (I) and let mi ∈ min (I) be an xi-label of d for i = 1, . . . , n. Then
d = π (lcmn

i=1mi) divides π (lcm(min (I))). 2

Sections 6.3 and 6.4 provide examples of how these ideas can be applied.

6.3. Linear IDPs, Codimension And Frobenius Numbers

Let r ∈ Rn and define the function vr(xu) := u · r. Then we refer to IDPs of the form
(10) as linear.

maximize vr(d) subject to d ∈ msm (I) (10)

It is well known that the codimension of a monomial ideal I ′ equals the minimal
number of generators of the ideals in irr (I ′). The reader may verify that this is exactly
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the optimal value of the IDP (10) if we let I :=
√
I ′ +

〈
x2

1, . . . , x
2
n

〉
and r = (1, . . . , 1),

noting the well known fact that the codimension of an ideal does not change by taking
the radical. This implies that solving IDPs is NP-hard since computing codimensions of
monomial ideals is NP-hard (Bayer and Stillman, 1992, Proposition 2.9). Linear IDPs are
also involved in the computation of Frobenius numbers (Roune, 2008b; Einstein et al.,
2007).

Let us return to the general situation of r and I being arbitrary. Our goal in this section
is to solve IDPs of the form (10) efficiently by constructing a bound. The techniques from
Section 6.2 do not immediately seem to apply, since vr need neither be increasing nor
decreasing. To deal with this problem, we will momentarily restrict our attention to some
special cases.

Let a ∈ Rn
≥0 be a vector of n non-negative real numbers, and define va(xu) := u · a.

We will construct a bound for the IDP

maximize va(d) subject to d ∈ msm (I) .

This is now easy to do, since va is increasing so that we can use the techniques from
Section 6.2. Specifically, va(d) ≤ va(qπ (lcm(min (I)))) for all d ∈ con (I, S, q).

Similarly, let b ∈ Rn
≤0 be a vector of n non-positive real numbers, and define vb(xu) :=

u · b. We will construct a bound for the IDP

maximize vb(d) subject to d ∈ msm (I) .

This is also easy, since vb is decreasing so that we can use the techniques from Section
6.2. Specifically, vb(d) ≤ vb(q) for all d ∈ con (I, S, q).

We now return to the issue of constructing a bound for the IDP (10). Choose a ∈ Rn
≥0

and b ∈ Rn
≤0 such that r = a+ b. Then we can combine the bounds for va and vb above

to get a bound for v. So if d ∈ con (I, S, q), then

v(d) = va(d) + vb(d) ≤ va(qπ (lcm(min (I)))) + vb(q) =: b(I, S, q)

Now that we have a bound b, we follow the suggestion from Section 6.1 that we
should devise a way to find pivots where we can predict that one of the slices will be
non-improving. Let (I, S, q) be the current slice and let xu := lcm(min (I)).

Suppose that ri is positive and consider the outer slice (I ′, S′, q′) from a pivot split on
xi. We can predict that the exponent of xi in our monomial upper bound will decrease
from degxi

(q) + ui − 1 down to degxi
(q). Thus we get that

ri(ui − 1) ≤ b(I, S, q)− b(I ′, S′, q′),

whereby

b(I ′, S′, q′) ≤ b(I, S, q)− ri(ui − 1),

which implies that the outer slice is non-improving if

b(I, S, q)− ri(ui − 1) ≤ τ, (11)
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where τ is the best value found so far. We can do a similar thing if ri is negative by
considering the value of degxi

(q′) on the inner slice of a pivot split on xui−1
i .

As we will see in Section 7.4, this turns out to make things considerably faster. One
reason is that checking Equation (11) for each variable xi is very fast, because it only
involves computations on the single monomial lcm(min (I)). Another reason is that we
can iterate this idea, as moving to the inner or outer slice can reduce the bound, opening
up the possibility for doing the same thing again. We can also apply the simplification
techniques from Section 4.1 after each successful application of Equation (11).

6.4. The Integer Programming Gap

Let c ∈ Qn and d ∈ Zk, and let A be a k×n integer matrix. The integer programming
gap of a bounded and feasible integer program of the form

minimize c · x subject to Ax = d, x ∈ Nn

is the difference between its optimal value and the optimal value of its linear programming
relaxation, which is defined as the linear program

minimize c · x subject to Ax = d, x ∈ Rn
≥0.

A paper of Hoşten and Sturmfels (2007) describes a way to compute the integer
programming gap that involves the sub-step of computing an irreducible decomposition
irr (I ′) of a monomial ideal I ′. Our goal in this section is to show that this sub-step
can be reformulated as an IDP whose objective function v satisfies the property that
a|b ⇒ v(a) ≤ v(b) whereby we can construct a bound using the technique from Section
6.2.

First choose t >> 0 and let I := I ′+
〈
xt+1

1 , . . . , xt+1
n

〉
so that we can consider msm (I)

in place of irr (I ′). Define ψ:Nn 7→ Nn by the expression

(ψ(u))i :=

 ui, for ui < t,

0, for ui ≥ t.

So if t = 4 then ψ(3, 4, 5) = (3, 0, 0). Define v(u) for u ∈ Nn as the optimal value of the
following linear program. We say that this linear program is associated to u.

maximize c · (ψ(u)− w)

subject to A(ψ(u)− w) = 0, w ∈ Rn

and wi ≥ 0 for those i where ui < t

The IDP that the algorithm of Hoşten and Sturmfels (2007) needs to solve is then

maximize v(u) subject to xu ∈ msm (I) .
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By Proposition 39 below, we can construct a bound for this IDP using the technique from
Section 6.2. Note that we can use this bound to search for non-improving outer slices for
pivots of the form xi in the exact same way as described for linear IDPs in Section 6.3.

Proposition 39. The function v satisfies the condition that xa|xb ⇒ v(a) ≤ v(b).

Proof. Let ei ∈ Nn be a vector of zeroes except that the i’th entry is 1. It suffices to
prove that v(u) ≤ v(u+ei) for u ∈ Nn. Let w ∈ Rn be some optimal solution to the linear
program associated to u. We will construct a feasible solution w′ to the linear program
associated to u + ei that has the same value. We will ensure this by making w′ satisfy
the equation ψ(u)− w = ψ(u+ ei)− w′.

The case ui + 1 < t: Let w′ := w + ei.
The case ui + 1 = t: Let w′ := w− uiei. Note that the non-negativity constraint on

the i’th entry of w′ is lifted due to ui + 1 = t.
The case ui + 1 > t: Let w′ := w. Note that this case is not relevant to the compu-

tation since no upper bound will be divisible by xt+1
i . 2

7. Benchmarks

We have implemented the Slice Algorithm in the software system Frobby (Roune,
2008a), and in this section we use Frobby to explore the Slice Algorithm’s practical
performance. Section 7.1 describes the test data we use, Section 7.2 compares a number
of split selection strategies, Section 7.3 compares Frobby to other programs and finally
Section 7.4 evaluates the impact of the bound optimization from Section 6.

7.1. The Test Data

In this section we briefly describe the test data that we use for the benchmarks. Table
1 displays some information about each input. The data used is publicly available at
http://www.broune.com/.

Generation of random monomial ideals
The random monomial ideals referred to below were generated using the following

algorithm, which depends on a parameter N ∈ N. We start out with the zero ideal.
A random monomial is then generated by pseudo-randomly generating each exponent
within the range [0, N ]. Then this monomial is added as a minimal generator of the
ideal if it does not dominate or divide any of the previously added minimal generators
of the ideal. This process continues until the ideal has the desired number of minimal
generators. The random number generator used was the standard C rand() function.

Description of the input data
This list provides information on each test input.

generic These ideals are nearly generic due to choosing N = 30.000.
nongeneric These ideals are non-generic due to choosing N = 10.
square free These ideals are square free due to choosing N = 1.
J51, J60 These ideals were generated using the reverse engineering algorithm of Jarrah

et al. (2006), and they were kindly provided by M. Paola Vera Licona. They have the
properties of having many variables, being square free and having a small irreducible
decomposition.
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name n |min(I)| |irr(I)| max. exponent

generic-v10g40 10 40 52,131 29,987

generic-v10g80 10 80 163,162 29,987

generic-v10g120 10 120 411,997 29,991

generic-v10g160 10 160 789,687 29,991

generic-v10g200 10 200 1,245,139 29,991

nongeneric-v10g100 10 100 19,442 10

nongeneric-v10g150 10 150 52,781 10

nongeneric-v10g200 10 200 79,003 10

nongeneric-v10g400 10 400 193,638 10

nongeneric-v10g600 10 600 318,716 10

nongeneric-v10g800 10 800 435,881 10

nongeneric-v10g1000 10 1,000 571,756 10

squarefree-v20g100 20 100 3,990 1

squarefree-v20g500 20 500 11,613 1

squarefree-v20g2000 20 2,000 22,796 1

squarefree-v20g4000 20 4,000 30,015 1

squarefree-v20g6000 20 6,000 30,494 1

squarefree-v20g8000 20 8,000 35,453 1

squarefree-v20g10000 20 10,000 37,082 1

J51 89 3,036 9 1

J60 89 3,432 10 1

smalldual 20 160,206 20 9

frobn12d11 12 56,693 4,323,076 87

frobn13d11 13 170,835 24,389,943 66

k4 16 61 139 3

k5 31 13,313 76,673 6

model4vars 16 20 64 2

model5vars 32 618 6,550 4

tcyc5d25p 125 3,000 20,475 1

tcyc5d30p 150 4,350 40,920 1

Table 1. Information about the test data.
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strategy generic- nongeneric- squarefree-

v10g200 v10g400 v20g10000 J60

MaxLabel 13s 13s 224s 19s

MinLabel 14s 13s 203s 2s

VarLabel 18s 13s 213s 13s

Minimum 13s 14s 19s 3s

Median 12s 11s 20s 3s

Maximum 35s 43s 19s 3s

MinGen 59s 201s 19s 4s

Indep 13s 12s 21s 3s

GCD 18s 20s 19s 3s

Table 2. Empirical comparison of split selection strategies.

smalldual This ideal has been generated as the Alexander dual of a random monomial
ideal with 20 minimal generators in 20 variables. Thus it has many minimal generators
and a small decomposition.

t5d25p, t5d30p These ideals are from the computation of cyclic tropical polytopes,
and they have the special property of being generated by monomials of the form xixj

(Block and Yu, 2006). They were kindly provided by Josephine Yu.
k4, k5 These ideals come with the program Monos written by Milowski (2007). They are

involved in computing the integer programming gap of a matrix (Hoşten and Sturmfels,
2007).

model4vars, model5vars These ideals come from computations on algebraic statisti-
cal models, and they were generated using the program 4ti2 (4ti2 team, 2006) with
the help of Seth Sullivant.

frobn12d11, frobn13d11 These ideals come from the computation of the Frobenius
number of respectively 12 and 13 random 11-digit numbers (Roune, 2008b).

7.2. Split Selection Strategies

In this section we evaluate the split selection strategies described in Section 5. Table
2 shows the results.

The most immediate conclusion that can be drawn from Table 2 is that label splits do
well on ideals that are somewhat generic, while they fare less well on square free ideals
when compared with pivot splits. It is a surprising contrast to this that the MinLabel
strategy is best able to deal with J60.

Table 2 also shows that the pivot strategies are very similar on square free ideals. This
is not surprising, as the only valid pivots on such ideals have the form xi, and the pivot
strategies all pick the same variable.

The final conclusion we will draw from Table 2 is that the Median strategy is the best
split selection strategy on these ideals, so that is the strategy we will use in the rest of
this section. The Minimum strategy is a very close second.
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7.3. Empirical Comparison To Other Programs

In this section we compare our implementation in Frobby (Roune, 2008a) of the Slice
Algorithm to other programs that compute irreducible decompositions. There are two
well known fast algorithms for computing irreducible decompositions of monomial ideals.
Alexander Duality This algorithm is based on Alexander duality and intersection of

ideals. Its advantage is speed on highly non-generic ideals. See Miller (1998); Hoşten
and Smith (2002); Milowski (2004).

Scarf Complex This algorithm enumerates the facets of the Scarf complex by walking
from one facet to adjacent ones. The advantage of the algorithm is speed for generic
ideals, while the drawback is that highly non-generic ideals lead to high memory con-
sumption and bad performance. This is because the algorithm internally transforms
the input ideal into a corresponding generic ideal that can have a much larger decom-
position. See Bayer et al. (1998); Milowski (2004)
We have benchmarked the following three programs.

Macaulay 2 version 1.0 This program (Grayson and Stillman, 2007) includes an im-
plementation of the Alexander Dual Algorithm. The time consuming parts of the al-
gorithm are written in C++.

Monos version 1.0 RC 2 This program 4 (Milowski, 2007) is Alexander Milowski’s
implementation in Java of both the Alexander Dual Algorithm and the Scarf Complex
Algorithm.

Frobby version 0.6 This C++ program (Roune, 2008a) is our implementation of the
Slice Algorithm.
How these programs compare depend on what kind of input is used, so we use all

the inputs described in Section 7.1 to get a complete picture. In order to run these
benchmarks in a reasonable amount of time, we have allowed each program to run for
one hour on each input and no longer. Each program has been allowed to use 512 MB
of RAM and no more, not including the space used by other programs. We use the
abbreviation OOT for “out of time”, OOM for “out of memory” and RE for “runtime
error”.

The benchmarks have all been run on the same Linux machine with a 2.4 GHz Intel
Celeron CPU. The reported time is the user time as measured by the Unix command
line utility “time”.

All of the data can be seen on Table 3. The data shows that Frobby is faster than the
other programs on all inputs except for smalldual. This is because the Alexander Dual
Algorithm does very well on this kind of input, due to the decomposition being very
small compared to the number of minimal generators. The decompositions of J51 and
J60 are also small compared to the number of minimal generators, though from the data
not small enough to make the Alexander Dual Algorithm win out.

It is clear from Table 3 that Macaulay 2 has the fastest implementation of the Alexan-
der Dual Algorithm when it does not run out of memory. As expected, the Scarf Complex
Algorithm beats the Alexander Dual Algorithm on generic ideals, while the positions are
reversed on square free ideals.

As can be seen from Table 3, the other programs frequently run out of memory. In
the case of Macaulay 2, this is clearly in large part due to some implementation issue.

4 There are two different versions of Monos that have both been released as version 1.0. We are using

the newest version, which is the version 1.0 RC2 that was released in 2007.
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However, the issue of consuming large amounts of memory is fundamental to both the
Alexander Dual Algorithm and the Scarf Complex Algorithm, since it is necessary for
them to keep the entire decomposition in memory, and these decompositions can be very
large - see frobn13d11 as an example. The Slice Algorithm does not have this issue.

An advantage of the Slice Algorithm is that the inner and outer slices of a pivot
split can be computed in parallel, making it simple to make use of multiple processors.
The Scarf Complex Algorithm is similarly easy to parallelize, while the Alexander Dual
Algorithm is not as amenable to a parallel implementation.

Although Frobby, Macaulay 2 and Monos can make use of no more more than a single
processor, multicore systems are fast becoming ubiquitous. Algorithmic research and
implementations must adapt or risk wasting almost all of the available processing power
on a typical system. E.g. a non-parallel implementation on an eight-way system will use
only 13% of the available processing power.

7.4. The Bound Technique

In this section we examine the impact of using the bound technique from Section 6 to
compute Frobenius numbers.

Table 4 displays the time 5 needed to solve a Frobenius problem IDP with and without
using the bound technique for some split selection strategies. We have included a new
selection strategy Frob that works as Median, except that it selects the variable that
maximizes the increase of the lower bound value on the inner slice.

It is clear from Table 4 that the Frob and Median split selection strategies are much
better than the others for computing Frobenius numbers, and that Frob is a bit better
than Median. We also see that applying the bound technique to the Frob split selection
strategy reduces the runtime to somewhere between one third and one half of what it is
when not using the bound technique.
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Input Frobby Macaulay2 Monos Monos

(Slice) (Alexander) (Alexander) (Scarf)

generic-v10g40 <1s 512s∗ 1632s 14s

generic-v10g80 1s OOM OOT 82s

generic-v10g120 4s OOM OOT 332s

generic-v10g160 8s OOM OOT OOM

generic-v10g200 12s OOM OOT OOM

nongeneric-v10g100 <1s 138s∗ 770s 191s

nongeneric-v10g150 1s OOM OOT OOT

nongeneric-v10g200 1s OOM OOT OOT
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∗: This time has been included in spite of using more than 512 MB of memory.
Table 3. Empirical comparison of programs for irreducible decomposition.
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strategy frob-n11d11 frob-n11d11 frob-n12d11 frob-n12d11

without bound using bound without bound using bound

Frob 66s 22s 204s 93s

Median 76s 35s 256s 147s

Maximum 226s 189s 805s 712s

Minimum 731s 761s 3205s 3388s

Table 4. Empirical evaluation of the bound technique.
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